mixtureProbs {momentuHMM} | R Documentation |
Mixture probabilities
Description
For a fitted model, this function computes the probability of each individual being in a particular mixture
Usage
mixtureProbs(m, getCI = FALSE, alpha = 0.95)
Arguments
m |
|
getCI |
Logical indicating whether to calculate standard errors and logit-transformed confidence intervals for fitted |
alpha |
Significance level of the confidence intervals (if |
Details
When getCI=TRUE
, it can take a while for large data sets and/or a large number of mixtures because the model likelihood for each individual must be repeatedly evaluated in order to numerically approximate the SEs.
Value
The matrix of individual mixture probabilities, with element [i,j] the probability of individual i being in mixture j
References
Maruotti, A., and T. Ryden. 2009. A semiparametric approach to hidden Markov models under longitudinal observations. Statistics and Computing 19: 381-393.
Examples
## Not run:
nObs <- 100
nbAnimals <- 20
dist <- list(step="gamma",angle="vm")
Par <- list(step=c(100,1000,50,100),angle=c(0,0,0.1,2))
# create sex covariate
cov <- data.frame(sex=factor(rep(c("F","M"),each=nObs*nbAnimals/2)))
formulaPi <- ~ sex + 0
# Females more likely in mixture 1, males more likely in mixture 2
beta <- list(beta=matrix(c(-1.5,-0.5,-1.5,-3),2,2),
pi=matrix(c(-2,2),2,1,dimnames=list(c("sexF","sexM"),"mix2")))
data.mix<-simData(nbAnimals=nbAnimals,obsPerAnimal=nObs,nbStates=2,dist=dist,Par=Par,
beta=beta,formulaPi=formulaPi,mixtures=2,covs=cov)
Par0 <- list(step=Par$step, angle=Par$angle[3:4])
m.mix <- fitHMM(data.mix, nbStates=2, dist=dist, Par0 = Par0,
beta0=beta,formulaPi=formulaPi,mixtures=2)
mixProbs <- mixtureProbs(m.mix, getCI=TRUE)
## End(Not run)