getTrProbs {momentuHMM} | R Documentation |
Transition probability matrix
Description
Computation of the transition probability matrix for each time step as a function of the covariates and the regression parameters.
Usage
getTrProbs(data, ...)
## Default S3 method:
getTrProbs(
data,
nbStates,
beta,
workBounds = NULL,
formula = ~1,
mixtures = 1,
betaRef = NULL,
stateNames = NULL,
getCI = FALSE,
covIndex = NULL,
alpha = 0.95,
...
)
## S3 method for class 'hierarchical'
getTrProbs(
data,
hierStates,
hierBeta,
workBounds = NULL,
hierFormula = NULL,
mixtures = 1,
hierDist,
getCI = FALSE,
covIndex = NULL,
alpha = 0.95,
...
)
Arguments
data |
If a data frame is provided, then either |
... |
further arguments passed to or from other methods; most are ignored if |
nbStates |
Number of states. Ignored unless |
beta |
Matrix of regression coefficients for the transition probabilities |
workBounds |
An optional named list of 2-column matrices specifying bounds on the working scale of the transition probability parameters ('beta' and, for recharge models, 'g0' and 'theta'). |
formula |
Regression formula for the transition probability covariates. Ignored unless |
mixtures |
Number of mixtures for the state transition probabilities. Ignored unless |
betaRef |
Indices of reference elements for t.p.m. multinomial logit link. Ignored unless |
stateNames |
Optional character vector of length nbStates indicating state names. Ignored unless |
getCI |
Logical indicating whether to calculate standard errors and logit-transformed confidence intervals based on fitted |
covIndex |
Integer vector indicating specific rows of the data to be used in the calculations. This can be useful for reducing unnecessarily long computation times (paricularly when |
alpha |
Significance level of the confidence intervals (if |
hierStates |
A hierarchical model structure |
hierBeta |
A hierarchical data structure |
hierFormula |
A hierarchical formula structure for the transition probability covariates for each level of the hierarchy ('formula'). See |
hierDist |
A hierarchical data structure |
Value
If mixtures=1
, an array of dimension nbStates
x nbStates
x nrow(data)
containing the t.p.m for each observation in data
.
If mixtures>1
, a list of length mixtures
, where each element is an array of dimension nbStates
x nbStates
x nrow(data)
containing the t.p.m for each observation in data
.
If getCI=TRUE
then a list of arrays is returned (with elements est
, se
, lower
, and upper
).
If a hierarchical HMM structure is provided, then a hierarchical data structure containing the state transition probabilities for each time step at each level of the hierarchy ('gamma') is returned.
Examples
m <- example$m
trProbs <- getTrProbs(m)
# equivalent
trProbs <- getTrProbs(m$data,nbStates=2,beta=m$mle$beta,formula=m$conditions$formula)
## Not run:
# calculate SEs and 95% CIs
trProbsSE <- getTrProbs(m, getCI=TRUE)
# plot estimates and CIs for each state transition
par(mfrow=c(2,2))
for(i in 1:2){
for(j in 1:2){
plot(trProbsSE$est[i,j,],type="l",
ylim=c(0,1), ylab=paste(i,"->",j))
arrows(1:dim(trProbsSE$est)[3],
trProbsSE$lower[i,j,],
1:dim(trProbsSE$est)[3],
trProbsSE$upper[i,j,],
length=0.025, angle=90, code=3, col=gray(.5), lwd=1.3)
}
}
# limit calculations to first 10 observations
trProbsSE_10 <- getTrProbs(m, getCI=TRUE, covIndex=1:10)
## End(Not run)