checkPar0 {momentuHMM} | R Documentation |
Check parameter length and order for a fitHMM
(or MIfitHMM
) model
Description
Prints parameters with labels based on DM
, formula
, and/or formulaDelta
. See fitHMM
for
further argument details.
Usage
checkPar0(data, ...)
## Default S3 method:
checkPar0(
data,
nbStates,
dist,
Par0 = NULL,
beta0 = NULL,
delta0 = NULL,
estAngleMean = NULL,
circularAngleMean = NULL,
formula = ~1,
formulaDelta = NULL,
stationary = FALSE,
mixtures = 1,
formulaPi = NULL,
DM = NULL,
userBounds = NULL,
workBounds = NULL,
betaCons = NULL,
betaRef = NULL,
deltaCons = NULL,
stateNames = NULL,
fixPar = NULL,
prior = NULL,
...
)
## S3 method for class 'hierarchical'
checkPar0(
data,
hierStates,
hierDist,
Par0 = NULL,
hierBeta = NULL,
hierDelta = NULL,
estAngleMean = NULL,
circularAngleMean = NULL,
hierFormula = NULL,
hierFormulaDelta = NULL,
mixtures = 1,
formulaPi = NULL,
DM = NULL,
userBounds = NULL,
workBounds = NULL,
betaCons = NULL,
deltaCons = NULL,
fixPar = NULL,
prior = NULL,
...
)
Arguments
data |
|
... |
further arguments passed to or from other methods |
nbStates |
Number of states of the HMM. |
dist |
A named list indicating the probability distributions of the data streams. |
Par0 |
Optional named list containing vectors of state-dependent probability distribution parameters for
each data stream specified in |
beta0 |
Optional matrix of regression coefficients for the transition probabilities. If |
delta0 |
Optional values or regression coefficients for the initial distribution of the HMM. If |
estAngleMean |
An optional named list indicating whether or not to estimate the angle mean for data streams with angular distributions ('vm' and 'wrpcauchy'). |
circularAngleMean |
An optional named list indicating whether to use circular-linear or circular-circular regression on the mean of circular distributions ('vm' and 'wrpcauchy') for turning angles. |
formula |
Regression formula for the transition probability covariates. |
formulaDelta |
Regression formula for the initial distribution. |
stationary |
|
mixtures |
Number of mixtures for the state transition probabilities. |
formulaPi |
Regression formula for the mixture distribution probabilities.
Note that only the covariate values from the first row for each individual ID in |
DM |
An optional named list indicating the design matrices to be used for the probability distribution parameters of each data stream. |
userBounds |
An optional named list of 2-column matrices specifying bounds on the natural (i.e, real) scale of the probability distribution parameters for each data stream. |
workBounds |
An optional named list of 2-column matrices specifying bounds on the working scale of the probability distribution, transition probability, and initial distribution parameters. |
betaCons |
Matrix of the same dimension as |
betaRef |
Numeric vector of length |
deltaCons |
Matrix of the same dimension as |
stateNames |
Optional character vector of length nbStates indicating state names. |
fixPar |
An optional list of vectors indicating parameters which are assumed known prior to fitting the model. |
prior |
A function that returns the log-density of the working scale parameter prior distribution(s). |
hierStates |
A hierarchical model structure |
hierDist |
A hierarchical data structure |
hierBeta |
A hierarchical data structure |
hierDelta |
A hierarchical data structure |
hierFormula |
A hierarchical formula structure for the transition probability covariates for each level of the hierarchy ('formula'). See |
hierFormulaDelta |
A hierarchical formula structure for the initial distribution covariates for each level of the hierarchy ('formulaDelta'). See |
See Also
Examples
m <- example$m
checkPar0(data=m$data, nbStates=2, dist=m$conditions$dist,
estAngleMean = m$conditions$estAngleMean,
formula = m$conditions$formula)
par <- getPar(m)
checkPar0(data=m$data, nbStates=2, dist=m$conditions$dist,
estAngleMean = m$conditions$estAngleMean,
formula = m$conditions$formula,
Par0=par$Par, beta0=par$beta, delta0=par$delta)
dummyDat <- data.frame(step=0,angle=0,cov1=0,cov2=0)
checkPar0(data=dummyDat, nbStates=2, dist=m$conditions$dist,
estAngleMean = m$conditions$estAngleMean,
formula = m$conditions$formula)
## Not run:
simDat <- simData(nbStates=2, dist=m$conditions$dist, Par = par$Par,
spatialCovs = list(forest=forest),
centers = matrix(0,1,2),
nbCovs = 2)
checkPar0(data = simDat, nbStates=2, dist=m$conditions$dist,
formula = ~forest,
DM = list(step=list(mean=~cov1, sd=~cov2),
angle=list(mean=~center1.angle,concentration=~1)),
estAngleMean=list(angle=TRUE),
circularAngleMean=list(angle=TRUE))
par <- list(step=rnorm(8),angle=rnorm(4))
beta0 <- matrix(rnorm(4),2,2)
delta0 <- c(0.5,0.5)
checkPar0(data = simDat, nbStates=2, dist=m$conditions$dist,
Par0 = par, beta0 = beta0, delta0 = delta0,
formula = ~forest,
DM = list(step=list(mean=~cov1, sd=~cov2),
angle=list(mean=~center1.angle,concentration=~1)),
estAngleMean=list(angle=TRUE),
circularAngleMean=list(angle=TRUE))
## End(Not run)