| AICweights {momentuHMM} | R Documentation |
Calculate Akaike information criterion model weights
Description
Calculate Akaike information criterion model weights
Usage
AICweights(..., k = 2, n = NULL)
Arguments
... |
|
k |
Penalty per parameter. Default: 2 ; for classical AIC. |
n |
Optional sample size. If specified, the small sample correction AIC is used (i.e., |
Details
Model objects must all be either of class
momentuHMMor multiple imputation model objects (of classHMMfitsand/ormiHMM).AIC is only valid for comparing models fitted to the same data. The data for each model fit must therefore be identical. For multiple imputation model objects, respective model fits must have identical data.
Value
The AIC weights of the models. If multiple imputation objects are provided, then the mean model weights (and standard deviations) are provided.
Examples
## Not run:
# HMM specifications
nbStates <- 2
stepDist <- "gamma"
angleDist <- "vm"
mu0 <- c(20,70)
sigma0 <- c(10,30)
kappa0 <- c(1,1)
stepPar0 <- c(mu0,sigma0)
anglePar0 <- c(-pi/2,pi/2,kappa0)
formula <- ~cov1+cov2
# example$m is a momentuHMM object (as returned by fitHMM), automatically loaded with the package
mod1 <- fitHMM(example$m$data,nbStates=nbStates,dist=list(step=stepDist,angle=angleDist),
Par0=list(step=stepPar0,angle=anglePar0),
formula=~1,estAngleMean=list(angle=TRUE))
Par0 <- getPar0(mod1,formula=formula)
mod2 <- fitHMM(example$m$data,nbStates=nbStates,dist=list(step=stepDist,angle=angleDist),
Par0=Par0$Par,beta0=Par0$beta,
formula=formula,estAngleMean=list(angle=TRUE))
AICweights(mod1,mod2)
Par0nA <- getPar0(mod1,estAngleMean=list(angle=FALSE))
mod3 <- fitHMM(example$m$data,nbStates=nbStates,dist=list(step=stepDist,angle=angleDist),
Par0=Par0nA$Par,beta0=Par0nA$beta,
formula=~1)
AICweights(mod1,mod2,mod3)
# add'l models provided as a list using the !!! operator
AICweights(mod1, !!!list(mod2,mod3))
## End(Not run)