quadra-methods {momentfit} | R Documentation |
~~ Methods for Function quadra
in Package momentfit ~~
Description
~~ Computes the quadratic form, where the center matrix is a class
momentWeights
object ~~
Usage
## S4 method for signature 'momentWeights,missing,missing'
quadra(w, x, y)
## S4 method for signature 'momentWeights,matrixORnumeric,missing'
quadra(w, x, y)
## S4 method for signature 'momentWeights,matrixORnumeric,matrixORnumeric'
quadra(w, x,
y)
## S4 method for signature 'sysMomentWeights,matrixORnumeric,matrixORnumeric'
quadra(w, x,
y)
## S4 method for signature 'sysMomentWeights,matrixORnumeric,missing'
quadra(w, x, y)
## S4 method for signature 'sysMomentWeights,missing,missing'
quadra(w, x, y)
Arguments
w |
An object of class |
x |
A matrix or numeric vector |
y |
A matrix or numeric vector |
Methods
signature(w = "momentWeights", x = "matrixORnumeric", y = "matrixORnumeric")
-
It computes
x'Wy
, whereW
is the weighting matrix. signature(w = "momentWeights", x = "matrixORnumeric", y = "missing")
-
It computes
x'Wx
, whereW
is the weighting matrix. signature(w = "momentWeights", x = "missing", y = "missing")
-
It computes
W
, whereW
is the weighting matrix. WhenW
is the inverse of the covariance matrix of the moment conditions, it is saved as either a QR decompisition, a Cholesky decomposition or a covariance matrix into themomentWeights
object. Thequadra
method with noy
andx
is therefore a way to invert it. The same applies to system of equations
Examples
data(simData)
theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)
gbar <- evalMoment(model1, theta)
gbar <- colMeans(gbar)
### Onjective function of GMM with identity matrix
wObj <- evalWeights(model1, w="ident")
quadra(wObj, gbar)
### Onjective function of GMM with efficient weights
wObj <- evalWeights(model1, theta)
quadra(wObj, gbar)
[Package momentfit version 0.5 Index]