| lambdaAlgo {momentfit} | R Documentation |
Algorithms to solve for the Lagrange multiplier
Description
The algorithms finds the vector or Lagrange multipliers that maximizes
the GEL objective function for a given vector of coefficient \theta.
Usage
Wu_lam(gmat, tol=1e-8, maxiter=50, k=1)
EEL_lam(gmat, k=1)
REEL_lam(gmat, tol=NULL, maxiter=50, k=1)
ETXX_lam(gmat, lambda0, k, gelType, algo, method, control)
getLambda(gmat, lambda0=NULL, gelType=NULL, rhoFct=NULL,
tol = 1e-07, maxiter = 100, k = 1, method="BFGS",
algo = c("nlminb", "optim", "Wu"), control = list(),
restrictedLam=integer())
Arguments
gmat |
The |
lambda0 |
The |
tol |
A tolerance level for the stopping rule in the Wu algorithm |
maxiter |
The maximum number of iteration in the Wu algorithm |
gelType |
A character string specifying the type of GEL. The
available types are |
rhoFct |
An optional function that return |
k |
A numeric scaling factor that is required when |
method |
This is the method for |
algo |
Which algorithm should be used to maximize the GEL objective
function. If set to |
control |
|
restrictedLam |
A vector of integers indicating which
|
Details
The ETXX_lam is used for ETEL and ETHD. In general, it
computes lambda using ET, and returns the value of the objective
function determined by the gelType.
Value
It returns the vector \rho(gmat \lambda) when derive=0,
\rho'(gmat \lambda) when derive=1 and \rho''(gmat
\lambda) when derive=2.
References
Anatolyev, S. (2005), GMM, GEL, Serial Correlation, and Asymptotic Bias. Econometrica, 73, 983-1002.
Kitamura, Yuichi (1997), Empirical Likelihood Methods With Weakly Dependent Processes. The Annals of Statistics, 25, 2084-2102.
Kitamura, Y. and Otsu, T. and Evdokimov, K. (2013), Robustness, Infinitesimal Neighborhoods and Moment Restrictions. Econometrica, 81, 1185-1201.
Newey, W.K. and Smith, R.J. (2004), Higher Order Properties of GMM and Generalized Empirical Likelihood Estimators. Econometrica, 72, 219-255.
Smith, R.J. (2011), GEL Criteria for Moment Condition Models. Econometric Theory, 27(6), 1192–1235.
Wu, C. (2005), Algorithms and R codes for the pseudo empirical likelihood method in survey sampling. Survey Methodology, 31(2), page 239.