kernapply-methods {momentfit} | R Documentation |
A kernel smoothing utility for "momentModel"
classes
Description
It either generates the optimal bandwidth and kernel weights or the smoothed moments of moment based models.
Usage
## S4 method for signature 'momentModel'
kernapply(x, theta=NULL, smooth=TRUE, ...)
Arguments
x |
An object of class |
theta |
An optional vector of coefficients. For
|
smooth |
By default, it returns the smoothed moment matrix. If
|
... |
Other arguments to pass. Currently not used |
Value
It return an object of class "sSpec"
.
References
Anatolyev, S. (2005), GMM, GEL, Serial Correlation, and Asymptotic Bias. Econometrica, 73, 983-1002.
Kitamura, Yuichi (1997), Empirical Likelihood Methods With Weakly Dependent Processes. The Annals of Statistics, 25, 2084-2102.
Smith, R.J. (2011), GEL Criteria for Moment Condition Models. Econometric Theory, 27(6), 1192–1235.
Examples
data(simData)
theta <- c(beta0=1,beta1=2)
## A linearModel
model1 <- momentModel(y~x1, ~z1+z2, data=simData,vcov="HAC",vcovOptions=list(kernel="Bartlett"))
### get the bandwidth
### Notice that the kernel name is the not the same
### That's because a Truncated kernel for smoothing
### lead to a Bartlett kernel for the HAC of the moments
### See Smith (2011)
kernapply(model1, smooth=FALSE)
### Adding the kernel option to the model
model2 <- momentModel(y~x1, ~z1+z2,
data=simData,vcov="HAC",vcovOptions=list(kernel="Bartlett"), smooth=TRUE)
kernapply(model2, theta)$smoothx[1:5,]