evalGmm-methods {momentfit} | R Documentation |
~~ Methods for Function evalGmm
in Package modelfit ~~
Description
Method to simply evaluate a GMM model at a fixed coefficient vector. It
creates a "gmmfit"
object using that fixed vector.
Usage
## S4 method for signature 'momentModel'
evalGmm(model, theta, wObj=NULL, ...)
## S4 method for signature 'sysModel'
evalGmm(model, theta, wObj=NULL, ...)
Arguments
model |
An object of class |
theta |
A vector of coefficients at which the model is estimated |
wObj |
An object of class |
... |
Other arguments to pass. Not used for the moment. |
Methods
signature(model = "momentModel")
signature(model = "sysModel")
Examples
data(simData)
theta <- c(beta0=1,beta1=2)
## A linear model
model1 <- momentModel(y~x1, ~z1+z2, data=simData)
evalGmm(model1, c(1,1))
## A nonlinear model
g <- y~beta0+x1^beta1
h <- ~z1+z2
model2 <- momentModel(g, h, c(beta0=1, beta1=2), data=simData)
evalGmm(model2, theta=c(beta1=2, beta0=0.5))
## A function model
fct <- function(tet, x)
{
m1 <- (tet[1] - x)
m2 <- (tet[2]^2 - (x - tet[1])^2)
m3 <- x^3 - tet[1]*(tet[1]^2 + 3*tet[2]^2)
f <- cbind(m1, m2, m3)
return(f)
}
dfct <- function(tet, x)
{
jacobian <- matrix(c( 1, 2*(-tet[1]+mean(x)), -3*tet[1]^2-3*tet[2]^2,0, 2*tet[2],
-6*tet[1]*tet[2]), nrow=3,ncol=2)
return(jacobian)
}
model3 <- momentModel(fct, simData$x3, theta0=c(beta0=1, beta1=2), grad=dfct)
evalGmm(model3, theta=c(beta1=.1, beta0=0.3))
[Package momentfit version 0.5 Index]