Model Selection with Bayesian Methods and Information Criteria


[Up] [Top]

Documentation for package ‘mombf’ version 3.5.4

Help Pages

A B C D E G H I L M N P Q R S U X Y Z

-- A --

aic Class "msPriorSpec"

-- B --

bbPrior Priors on model space for variable selection problems
bestAIC Model with best AIC, BIC, EBIC or other general information criteria (getIC)
bestBIC Model with best AIC, BIC, EBIC or other general information criteria (getIC)
bestEBIC Model with best AIC, BIC, EBIC or other general information criteria (getIC)
bestIC Model with best AIC, BIC, EBIC or other general information criteria (getIC)
bfnormmix Number of Normal mixture components under Normal-IW and Non-local priors
bic Class "msPriorSpec"
bicprior Class "msPriorSpec"
binomPrior Priors on model space for variable selection problems

-- C --

cil Treatment effect estimation for linear models via Confounder Importance Learning using non-local priors.
coef.mixturebf Class "mixturebf"
coefByModel Class "msfit"
coefByModel-method Class "msfit"
coefByModel-methods Class "msfit"

-- D --

dalapl Density and random draws from the asymmetric Laplace distribution
ddir Dirichlet density
demom Non-local prior density, cdf and quantile functions.
demom-method Non-local prior density, cdf and quantile functions.
demom-methods Non-local prior density, cdf and quantile functions.
demomigmarg Non-local prior density, cdf and quantile functions.
dimom Non-local prior density, cdf and quantile functions.
diwish Density for Inverse Wishart distribution
dmom Non-local prior density, cdf and quantile functions.
dmomigmarg Non-local prior density, cdf and quantile functions.
dpostNIW Posterior Normal-IWishart density

-- E --

emomprior Class "msPriorSpec"
eprod Expectation of a product of powers of Normal or T random variables
exponentialprior Class "msPriorSpec"

-- G --

getAIC Obtain AIC, BIC, EBIC or other general information criteria (getIC)
getAIC-method Obtain AIC, BIC, EBIC or other general information criteria (getIC)
getAIC-methods Obtain AIC, BIC, EBIC or other general information criteria (getIC)
getBIC Obtain AIC, BIC, EBIC or other general information criteria (getIC)
getBIC-method Obtain AIC, BIC, EBIC or other general information criteria (getIC)
getBIC-methods Obtain AIC, BIC, EBIC or other general information criteria (getIC)
getEBIC Obtain AIC, BIC, EBIC or other general information criteria (getIC)
getEBIC-method Obtain AIC, BIC, EBIC or other general information criteria (getIC)
getEBIC-methods Obtain AIC, BIC, EBIC or other general information criteria (getIC)
getIC Obtain AIC, BIC, EBIC or other general information criteria (getIC)
getIC-method Obtain AIC, BIC, EBIC or other general information criteria (getIC)
getIC-methods Obtain AIC, BIC, EBIC or other general information criteria (getIC)
groupemomprior Class "msPriorSpec"
groupimomprior Class "msPriorSpec"
groupmomprior Class "msPriorSpec"
groupzellnerprior Class "msPriorSpec"

-- H --

hald Hald Data

-- I --

ic Class "msPriorSpec"
icfit Class "icfit"
icfit-class Class "icfit"
icfit.coef Class "icfit"
icfit.predict Class "icfit"
icfit.summary Class "icfit"
icov Extract estimated inverse covariance
igprior Class "msPriorSpec"
imombf Moment and inverse moment Bayes factors for linear models.
imombf.lm Moment and inverse moment Bayes factors for linear models.
imomknown Bayes factors for moment and inverse moment priors
imomprior Class "msPriorSpec"
imomunknown Bayes factors for moment and inverse moment priors

-- L --

localnulltest Local variable selection
localnulltest_fda Local variable selection
localnulltest_fda_givenknots Local variable selection
localnulltest_givenknots Local variable selection

-- M --

marginalNIW Marginal likelihood under a multivariate Normal likelihood and a conjugate Normal-inverse Wishart prior.
marginalNIW-method Marginal likelihood under a multivariate Normal likelihood and a conjugate Normal-inverse Wishart prior.
marginalNIW-methods Marginal likelihood under a multivariate Normal likelihood and a conjugate Normal-inverse Wishart prior.
mixturebf Class "mixturebf"
mixturebf-class Class "mixturebf"
modelbbprior Class "msPriorSpec"
modelbinomprior Class "msPriorSpec"
modelcomplexprior Class "msPriorSpec"
modelsearchBlockDiag Bayesian variable selection for linear models via non-local priors.
modelSelection Bayesian variable selection for linear models via non-local priors.
modelSelectionGGM Bayesian variable selection for linear models via non-local priors.
modelunifprior Class "msPriorSpec"
mombf Moment and inverse moment Bayes factors for linear models.
mombf.lm Moment and inverse moment Bayes factors for linear models.
momknown Bayes factors for moment and inverse moment priors
momprior Class "msPriorSpec"
momunknown Bayes factors for moment and inverse moment priors
msfit Class "msfit"
msfit-class Class "msfit"
msfit.coef Class "msfit"
msfit.plot Class "msfit"
msfit.predict Class "msfit"
msfit_ggm Class "msfit_ggm"
msfit_ggm-class Class "msfit_ggm"
msfit_ggm.coef Class "msfit_ggm"
msPriorSpec Class "msPriorSpec"
msPriorSpec-class Class "msPriorSpec"

-- N --

nlpMarginal Marginal density of the observed data for linear regression with Normal, two-piece Normal, Laplace or two-piece Laplace residuals under non-local and Zellner priors
nlpmarginals Marginal density of the observed data for linear regression with Normal, two-piece Normal, Laplace or two-piece Laplace residuals under non-local and Zellner priors
normalidprior Class "msPriorSpec"

-- P --

palapl Density and random draws from the asymmetric Laplace distribution
pemom Non-local prior density, cdf and quantile functions.
pemomigmarg Non-local prior density, cdf and quantile functions.
pimom Non-local prior density, cdf and quantile functions.
pimomMarginalK Marginal density of the observed data for linear regression with Normal, two-piece Normal, Laplace or two-piece Laplace residuals under non-local and Zellner priors
pimomMarginalU Marginal density of the observed data for linear regression with Normal, two-piece Normal, Laplace or two-piece Laplace residuals under non-local and Zellner priors
plotprior Plot estimated marginal prior inclusion probabilities
plotprior-method Plot estimated marginal prior inclusion probabilities
plotprior-methods Plot estimated marginal prior inclusion probabilities
pmom Non-local prior density, cdf and quantile functions.
pmomigmarg Non-local prior density, cdf and quantile functions.
pmomMarginalK Marginal density of the observed data for linear regression with Normal, two-piece Normal, Laplace or two-piece Laplace residuals under non-local and Zellner priors
pmomMarginalU Marginal density of the observed data for linear regression with Normal, two-piece Normal, Laplace or two-piece Laplace residuals under non-local and Zellner priors
postModeBlockDiag Bayesian model selection and averaging under block-diagonal X'X for linear models.
postModeOrtho Bayesian model selection and averaging under block-diagonal X'X for linear models.
postProb Obtain posterior model probabilities
postProb-method Obtain posterior model probabilities
postProb-methods Obtain posterior model probabilities
postSamples Extract posterior samples from an object
postSamples-method Extract posterior samples from an object
postSamples-methods Extract posterior samples from an object
priorp2g Moment and inverse moment prior elicitation

-- Q --

qimom Non-local prior density, cdf and quantile functions.
qmom Non-local prior density, cdf and quantile functions.

-- R --

ralapl Density and random draws from the asymmetric Laplace distribution
rnlp Posterior sampling for regression parameters
rnlp-method Posterior sampling for regression parameters
rnlp-methods Posterior sampling for regression parameters
rpostNIW Posterior Normal-IWishart density

-- S --

show-method Class "icfit"
show-method Class "mixturebf"
show-method Class "msfit"
show-method Class "msfit_ggm"

-- U --

unifPrior Priors on model space for variable selection problems

-- X --

x.hald Hald Data

-- Y --

y.hald Hald Data

-- Z --

zellnerprior Class "msPriorSpec"