summary.modsem_lms {modsem} | R Documentation |
summary for modsem objects
Description
summary for modsem objects
summary for modsem objects
summary for modsem objects
summary for modsem objects
Usage
## S3 method for class 'modsem_lms'
summary(
object,
H0 = TRUE,
verbose = TRUE,
r.squared = TRUE,
adjusted.stat = FALSE,
digits = 3,
scientific = FALSE,
ci = FALSE,
standardized = FALSE,
loadings = TRUE,
regressions = TRUE,
covariances = TRUE,
intercepts = TRUE,
variances = TRUE,
...
)
## S3 method for class 'modsem_qml'
summary(
object,
H0 = TRUE,
verbose = TRUE,
r.squared = TRUE,
adjusted.stat = FALSE,
digits = 3,
scientific = FALSE,
ci = FALSE,
standardized = FALSE,
loadings = TRUE,
regressions = TRUE,
covariances = TRUE,
intercepts = TRUE,
variances = TRUE,
...
)
## S3 method for class 'modsem_mplus'
summary(
object,
scientific = FALSE,
standardize = FALSE,
ci = FALSE,
digits = 3,
loadings = TRUE,
regressions = TRUE,
covariances = TRUE,
intercepts = TRUE,
variances = TRUE,
...
)
## S3 method for class 'modsem_pi'
summary(object, ...)
Arguments
object |
modsem object to summarized |
H0 |
should a null model be estimated (used for comparison) |
verbose |
print progress for the estimation of null model |
r.squared |
calculate R-squared |
adjusted.stat |
should sample size corrected/adjustes AIC and BIC be reported? |
digits |
number of digits to print |
scientific |
print p-values in scientific notation |
ci |
print confidence intervals |
standardized |
print standardized estimates |
loadings |
print loadings |
regressions |
print regressions |
covariances |
print covariances |
intercepts |
print intercepts |
variances |
print variances |
... |
arguments passed to lavaan::summary() |
standardize |
standardize estimates |
Examples
## Not run:
m1 <- "
# Outer Model
X =~ x1 + x2 + x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3
# Inner model
Y ~ X + Z + X:Z
"
est1 <- modsem(m1, oneInt, "lms")
summary(est1, ci = TRUE, scientific = TRUE)
## End(Not run)
## Not run:
m1 <- "
# Outer Model
X =~ x1 + x2 + x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3
# Inner model
Y ~ X + Z + X:Z
"
est1 <- modsem(m1, oneInt, "qml")
summary(est1, ci = TRUE, scientific = TRUE)
## End(Not run)
[Package modsem version 1.0.1 Index]