plot_interaction {modsem} | R Documentation |
Plot Interaction Effects
Description
Plot Interaction Effects
Usage
plot_interaction(
x,
z,
y,
xz = NULL,
vals_x = seq(-3, 3, 0.001),
vals_z,
model,
alpha_se = 0.15,
...
)
Arguments
x |
The name of the variable on the x-axis |
z |
The name of the moderator variable |
y |
The name of the outcome variable |
xz |
The name of the interaction term. If the interaction term is not specified, it it will be created using 'x' and 'z'. |
vals_x |
The values of the x variable to plot, the more values the smoother the std.error-area will be |
vals_z |
The values of the moderator variable to plot. A seperate regression line ("y ~ x | z") will be plotted for each value of the moderator variable |
model |
An object of class 'modsem_pi', 'modsem_da', or 'modsem_mplus' |
alpha_se |
The alpha level for the std.error area |
... |
Additional arguments passed to other functions |
Value
A ggplot object
Examples
library(modsem)
## Not run:
m1 <- "
# Outer Model
X =~ x1
X =~ x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3
# Inner model
Y ~ X + Z + X:Z
"
est1 <- modsem(m1, data = oneInt)
plot_interaction("X", "Z", "Y", "X:Z", -3:3, c(-0.2, 0), est1)
tpb <- "
# Outer Model (Based on Hagger et al., 2007)
ATT =~ att1 + att2 + att3 + att4 + att5
SN =~ sn1 + sn2
PBC =~ pbc1 + pbc2 + pbc3
INT =~ int1 + int2 + int3
BEH =~ b1 + b2
# Inner Model (Based on Steinmetz et al., 2011)
# Causal Relationsships
INT ~ ATT + SN + PBC
BEH ~ INT + PBC
# BEH ~ ATT:PBC
BEH ~ PBC:INT
# BEH ~ PBC:PBC
"
est2 <- modsem(tpb, TPB, method = "lms")
plot_interaction(x = "INT", z = "PBC", y = "BEH", xz = "PBC:INT",
vals_z = c(-0.5, 0.5), model = est2)
## End(Not run)
[Package modsem version 1.0.1 Index]