ER {modi} | R Documentation |
Robust EM-algorithm ER
Description
The ER
function is an implementation of the ER-algorithm
of Little and Smith (1987).
Usage
ER(
data,
weights,
alpha = 0.01,
psi.par = c(2, 1.25),
em.steps = 100,
steps.output = FALSE,
Estep.output = FALSE,
tolerance = 1e-06
)
Arguments
data |
a data frame or matrix with the data. |
weights |
sampling weights. |
alpha |
probability for the quantile of the cut-off. |
psi.par |
further parameters passed to the psi-function. |
em.steps |
number of iteration steps of the EM-algorithm. |
steps.output |
if |
Estep.output |
if |
tolerance |
convergence criterion (relative change). |
Details
The M-step of the EM-algorithm uses a one-step M-estimator.
Value
sample.size
Number of observations
number.of.variables
Number of variables
significance.level
alpha
computation.time
Elapsed computation time
good.data
Indices of the data in the final good subset
outliers
Indices of the outliers
center
Final estimate of the center
scatter
Final estimate of the covariance matrix
dist
Final Mahalanobis distances
rob.weights
Robustness weights in the final EM step
Author(s)
Beat Hulliger
References
Little, R. and P. Smith (1987). Editing and imputation for quantitative survey data. Journal of the American Statistical Association, 82, 58-68.
See Also
Examples
data(bushfirem, bushfire.weights)
det.res <- ER(bushfirem, weights = bushfire.weights, alpha = 0.05,
steps.output = TRUE, em.steps = 100, tol = 2e-6)
PlotMD(det.res$dist, ncol(bushfirem))