| ER {modi} | R Documentation |
Robust EM-algorithm ER
Description
The ER function is an implementation of the ER-algorithm
of Little and Smith (1987).
Usage
ER(
data,
weights,
alpha = 0.01,
psi.par = c(2, 1.25),
em.steps = 100,
steps.output = FALSE,
Estep.output = FALSE,
tolerance = 1e-06
)
Arguments
data |
a data frame or matrix with the data. |
weights |
sampling weights. |
alpha |
probability for the quantile of the cut-off. |
psi.par |
further parameters passed to the psi-function. |
em.steps |
number of iteration steps of the EM-algorithm. |
steps.output |
if |
Estep.output |
if |
tolerance |
convergence criterion (relative change). |
Details
The M-step of the EM-algorithm uses a one-step M-estimator.
Value
sample.sizeNumber of observations
number.of.variablesNumber of variables
significance.levelalpha
computation.timeElapsed computation time
good.dataIndices of the data in the final good subset
outliersIndices of the outliers
centerFinal estimate of the center
scatterFinal estimate of the covariance matrix
distFinal Mahalanobis distances
rob.weightsRobustness weights in the final EM step
Author(s)
Beat Hulliger
References
Little, R. and P. Smith (1987). Editing and imputation for quantitative survey data. Journal of the American Statistical Association, 82, 58-68.
See Also
Examples
data(bushfirem, bushfire.weights)
det.res <- ER(bushfirem, weights = bushfire.weights, alpha = 0.05,
steps.output = TRUE, em.steps = 100, tol = 2e-6)
PlotMD(det.res$dist, ncol(bushfirem))