Estimation of Model-Based Predictions, Contrasts and Means


[Up] [Top]

Documentation for package ‘modelbased’ version 0.8.8

Help Pages

describe_nonlinear Describe the smooth term (for GAMs) or non-linear predictors
describe_nonlinear.data.frame Describe the smooth term (for GAMs) or non-linear predictors
estimate_contrasts Estimate Marginal Contrasts
estimate_expectation Model-based response estimates and uncertainty
estimate_grouplevel Group-specific parameters of mixed models random effects
estimate_link Model-based response estimates and uncertainty
estimate_means Estimate Marginal Means (Model-based average at each factor level)
estimate_prediction Model-based response estimates and uncertainty
estimate_relation Model-based response estimates and uncertainty
estimate_response Model-based response estimates and uncertainty
estimate_slopes Estimate Marginal Effects
estimate_smooth Describe the smooth term (for GAMs) or non-linear predictors
find_inversions Find points of inversion
get_emcontrasts Easy 'emmeans' and 'emtrends'
get_emmeans Easy 'emmeans' and 'emtrends'
get_emtrends Easy 'emmeans' and 'emtrends'
get_marginaleffects Easy marginaleffects
model_emcontrasts Easy 'emmeans' and 'emtrends'
model_emmeans Easy 'emmeans' and 'emtrends'
model_emtrends Easy 'emmeans' and 'emtrends'
reshape_grouplevel Group-specific parameters of mixed models random effects
smoothing Smoothing a vector or a time series
visualisation_matrix Create a reference grid
visualisation_matrix.data.frame Create a reference grid
visualisation_matrix.factor Create a reference grid
visualisation_matrix.numeric Create a reference grid
visualisation_recipe.estimate_grouplevel Visualisation Recipe for 'modelbased' Objects
visualisation_recipe.estimate_means Visualisation Recipe for 'modelbased' Objects
visualisation_recipe.estimate_predicted Visualisation Recipe for 'modelbased' Objects
visualisation_recipe.estimate_slopes Visualisation Recipe for 'modelbased' Objects
zero_crossings Find zero crossings of a vector