tailoffspringQ {modelSSE} | R Documentation |
The "20/80" rule
Description
To calculate proportion of (Q
) offspring cases generated from proportion of (P
) the most infectious index cases with pre-defined epidemiological parameters for the offspring distribution.
Usage
tailoffspringQ(
P = 0.2,
epi.para = list(mean = 1, disp = 0.5, shift = 0.2),
offspring.type = "D",
n.seed = 1000
)
mostinfectiousP(
Q = 0.8,
epi.para = list(mean = 1, disp = 0.5, shift = 0.2),
offspring.type = "D",
n.seed = 1000
)
Arguments
P , Q |
A scalar, or a vector of probability (i.e., ranging from 0 to 1). |
epi.para |
A list ( |
offspring.type |
A character label (
By default, |
n.seed |
A positive integer, for the number of seeds used to solve |
Value
Function tailoffspringQ()
returns the proportion of (Q
) offspring cases generated from proportion of (P
) index cases, where (P
) is given.
Function mostinfectiousP()
returns the proportion of (P
) index cases that generated proportion of (Q
) offspring cases, where (Q
) is given.
Note
When n.seed
is large, e.g., n.seed
> 100000, the functions could take minutes to complete.
As such, we do not recommend the users to change the default setting of n.seed
unless for special reasons.
Each parameter in epi.para = list(mean = ?, disp = ?, shift = ?)
should be a scalar, which means vector is not allowed here.
References
Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005;438(7066):355-359. doi:10.1038/nature04153
Endo A, Abbott S, Kucharski AJ, Funk S. Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Research. 2020;5:67. doi:10.12688/wellcomeopenres.15842.3
Adam DC, Wu P, Wong JY, Lau EH, Tsang TK, Cauchemez S, Leung GM, Cowling BJ. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nature Medicine. 2020;26(11):1714-9. doi:10.1038/s41591-020-1092-0
Zhao S, Chong MK, Ryu S, Guo Z, He M, Chen B, Musa SS, Wang J, Wu Y, He D, Wang MH. Characterizing superspreading potential of infectious disease: Decomposition of individual transmissibility. PLoS Computational Biology. 2022;18(6):e1010281. doi:10.1371/journal.pcbi.1010281
See Also
Examples
## reproducing the results in Endo, et al. (2020) https://doi.org/10.12688/wellcomeopenres.15842.3,
## where ~80% offspring cases were generated from ~10% index cases
## with parameters R of ~2.5 (ranging from 2 to 3) and
## k of ~0.1 (ranging from 0.05 to 0.20) under NB distribution.
tailoffspringQ(
P = 0.10,
epi.para = list(mean = 2.5, disp = 0.10, shift = 0.2),
offspring.type = "NB"
)
mostinfectiousP(
Q = 0.80,
epi.para = list(mean = 2.5, disp = 0.10, shift = 0.2),
offspring.type = "NB"
)
## reproducing the results in Adam, et al. (2020) https://doi.org/10.1038/s41591-020-1092-0,
## where ~80% offspring cases were generated from ~19% index cases
## with parameters R of 0.58 and k of 0.43 under NB distribution.
tailoffspringQ(
P = 0.19,
epi.para = list(mean = 0.58, disp = 0.43, shift = 0.2),
offspring.type = "NB"
)
mostinfectiousP(
Q = 0.80,
epi.para = list(mean = 0.58, disp = 0.43, shift = 0.2),
offspring.type = "NB"
)