modelDown {modelDown} | R Documentation |
Generates a website with HTML summaries for predictive models
Description
Generates a website with HTML summaries for predictive models
Usage
modelDown(..., modules = c("auditor", "drifter", "model_performance",
"variable_importance", "variable_response"), output_folder = "output",
repository_name = "repository", should_open_website = interactive())
Arguments
... |
one or more explainers created with |
modules |
modules that should be included in the website |
output_folder |
folder where the website will be saved |
repository_name |
name of local archivist repository that will be created |
should_open_website |
should generated website be automatically opened in default browser |
Details
Additional arguments that could by passed by name:
remote_repository_path Path to remote repository that stores folder with archivist repository. If not provided, links to local repository will be shown.
device Device to use. Tested for "png" and "svg", but values from
ggplot2::ggsave
function should be working fine. Defaults to "png".vr.vars variables which will be examined in Variable Response module. Defaults to all variables. Example vr.vars = c("var1", "var2")
vr.type types of examinations which will be conducteed in Variable Response module. Defaults to "pdp". Example vr.type = c("ale", "pdp")
Author(s)
Przemysław Biecek, Magda Tatarynowicz, Kamil Romaszko, Mateusz Urbański
Examples
require("ranger")
require("breakDown")
require("DALEX")
# Generate simple modelDown page
HR_data_selected <- HR_data[1000:3000,]
HR_glm_model <- glm(left~., HR_data_selected, family = "binomial")
explainer_glm <- explain(HR_glm_model, data=HR_data_selected, y = HR_data_selected$left)
modelDown::modelDown(explainer_glm,
modules = c("model_performance", "variable_importance",
"variable_response"),
output_folder = tempdir(),
repository_name = "HR",
device = "png",
vr.vars= c("average_montly_hours"),
vr.type = "ale")
# More complex example with all modules
HR_ranger_model <- ranger(as.factor(left) ~ .,
data = HR_data, num.trees = 500, classification = TRUE, probability = TRUE)
explainer_ranger <- explain(HR_ranger_model,
data = HR_data, y = HR_data$left, function(model, data) {
return(predict(model, data)$prediction[,2])
}, na.rm=TRUE)
# Two glm models used for drift detection
HR_data1 <- HR_data[1:4000,]
HR_data2 <- HR_data[4000:nrow(HR_data),]
HR_glm_model1 <- glm(left~., HR_data1, family = "binomial")
HR_glm_model2 <- glm(left~., HR_data2, family = "binomial")
explainer_glm1 <- explain(HR_glm_model1, data=HR_data1, y = HR_data1$left)
explainer_glm2 <- explain(HR_glm_model2, data=HR_data2, y = HR_data2$left)
modelDown::modelDown(list(explainer_glm1, explainer_glm2),
modules = c("auditor", "drifter", "model_performance", "variable_importance",
"variable_response"),
output_folder = tempdir(),
repository_name = "HR",
remote_repository_path = "some_user/remote_repo_name",
device = "png",
vr.vars= c("average_montly_hours", "time_spend_company"),
vr.type = "ale")