modeHunting {modehunt} | R Documentation |
Multiscale analysis of a density on all possible intervals
Description
Simultanous confidence statements for the existence and location of local increases and decreases of a density f, computed on all intervals spanned by two observations.
Usage
modeHunting(X.raw, lower = -Inf, upper = Inf, crit.vals, min.int = FALSE)
Arguments
X.raw |
Vector of observations. |
lower |
Lower support point of |
upper |
Upper support point of |
crit.vals |
2-dimensional vector giving the critical values for the desired level. |
min.int |
If |
Details
In general, the methods modeHunting
, modeHuntingApprox
, and
modeHuntingBlock
compute for a given level \alpha \in (0, 1)
and the corresponding
critical value c_{jk}(\alpha)
two sets of intervals
\mathcal{D}^\pm(\alpha) = \Bigl\{ \mathcal{I}_{jk} \ : \ \pm T_{jk}({\bf{X}} ) > c_{jk}(\alpha) \Bigr\}
where \mathcal{I}_{jk}:=(X_{(j)},X_{(k)})
for 0\le j < k \le n+1, k-j> 1
and c_{jk}
are
appropriate critical values.
Specifically, the function modeHunting
computes \mathcal{D}^\pm(\alpha)
based on the two
test statistics
T_n^+({\bf{X}}, \mathcal{I}) = \max_{(j,k) \in \mathcal{I}} \Bigl( |T_{jk}({\bf{X}})| / \sigma_{jk} - \Gamma \Bigl(\frac{k-j}{n+2}\Bigr)\Bigr)
and
T_n({\bf{X}}, \mathcal{I}) = \max_{(j,k) \in \mathcal{I}} ( |T_{jk}({\bf{X}})| / \sigma_{jk} ),
using the set \mathcal{I} := \mathcal{I}_{all}
of all intervals spanned by two observations
(X_{(j)}, X_{(k)})
:
\mathcal{I}_{all} = \Bigl\{(j, \ k ) \ : \ 0 \le j < k \le n+1, \ k - j > 1\Bigr\}.
We introduced the local test statistics
T_{jk}({\bf{X}}) := \sum_{i=j+1}^{k-1} ( 2 X_{(i; j, k)} - 1) 1\{X_{(i; j, k)} \in (0,1)\},
for local order statistics
X_{(i; j, k)} := \frac{X_{(i)}-X_{(j)}}{X_{(k)} - X_{(j)}},
the standard deviation \sigma_{jk} := \sqrt{(k-j-1)/3}
and the additive correction term
\Gamma(\delta) := \sqrt{2 \log(e / \delta)}
for \delta > 0
.
If min.int = TRUE
, the set \mathcal{D}^\pm(\alpha)
is replaced by the set {\bf{D}}^\pm(\alpha)
of its minimal elements. An interval J \in \mathcal{D}^\pm(\alpha)
is called minimal if
\mathcal{D}^\pm(\alpha)
contains no proper subset of J
. This minimization post-processing
step typically massively reduces the number of intervals. If we are mainly interested in locating the ranges
of increases and decreases of f
as precisely as possible, the intervals in
\mathcal{D}^\pm(\alpha) \setminus \bf{D}^\pm(\alpha)
do not contain relevant information.
Value
Dp |
The set |
Dm |
The set |
Dp.noadd |
The set |
Dm.noadd |
The set |
Note
Critical values for modeHunting
and some combinations of n
and \alpha
are provided in the
data set cvModeAll
. Critical values for other values of n
and \alpha
can be generated
using criticalValuesAll
.
Parts of this function were derived from MatLab code provided on Lutz Duembgen's webpage,
http://www.staff.unibe.ch/duembgen.
Author(s)
Kaspar Rufibach, kaspar.rufibach@gmail.com,
http://www.kasparrufibach.ch
Guenther Walther, gwalther@stanford.edu,
www-stat.stanford.edu/~gwalther
References
Duembgen, L. and Walther, G. (2008). Multiscale Inference about a density. Ann. Statist., 36, 1758–1785.
Rufibach, K. and Walther, G. (2010). A general criterion for multiscale inference. J. Comput. Graph. Statist., 19, 175–190.
See Also
modeHuntingApprox
, modeHuntingBlock
, and cvModeAll
.
Examples
## for examples type
help("mode hunting")
## and check the examples there