criticalValuesApprox {modehunt} | R Documentation |
Compute critical values for (1) the original test statistic with or without additive correction, based on the aprroximating set of intervals and (2) for the block procedure
Description
This function computes critical values that can be used to perform the multiscale analysis about a
density with the functions modeHuntingApprox
and modeHuntingBlock
.
Usage
criticalValuesApprox(n, d0 = 2, m0 = 10, fm = 2, alpha = 0.05,
gam = 2, tail = 10, M = 10 ^ 5, display = 0, path = NA)
Arguments
n |
Number of observations. |
d0 |
Initial parameter for the grid resolution. |
m0 |
Initial parameter for the number of observations in one block. |
fm |
Factor by which |
alpha |
Significance level, real number in |
gam |
Weighting exponent for level in each block. |
tail |
Offset, determines together with |
M |
Number of runs to perform. |
display |
If |
path |
If |
Details
For details see the function modeHuntingApprox
and the data set cvModeApprox
.
Value
approx |
A 2-dimensional vector containing the critical value for the test statistic with or without
additive correction |
block |
A vector containing the critical value for each block. |
Note
The asymptotic results in Rufibach and Walther (2010) are only derived for f_m = 2
.
Author(s)
Kaspar Rufibach, kaspar.rufibach@gmail.com,
http://www.kasparrufibach.ch
Guenther Walther, gwalther@stanford.edu,
www-stat.stanford.edu/~gwalther
References
Rufibach, K. and Walther, G. (2010). A general criterion for multiscale inference. J. Comput. Graph. Statist., 19, 175–190.
See Also
The resulting critical values are used by the functions modeHuntingApprox
and
modeHuntingBlock
. Critical values
for some combinations of n
and \alpha
are available in cvModeApprox
and
cvModeBlock
.
Examples
## compute critical values and compare to those in cvModeAll and cvModeBlock
## (to see output in R, press CTRL + W)
cv <- criticalValuesApprox(n = 200, d0 = 2, m0 = 10, fm = 2,
alpha = 0.05, gam = 2, tail = 10, M = 10 ^ 2, display = 1, path = NA)
cv1 <- cv$approx; cv2 <- cv$block
data(cvModeApprox); data(cvModeBlock)
cv3 <- cvModeApprox[cvModeApprox$alpha == 0.05 & cvModeApprox$n == 200, 3:4]
cv4 <- cvModeBlock[cvModeBlock$alpha == 0.05 & cvModeBlock$n == 200, 3:6]
rbind(cv1, cv3)
rbind(cv2, cv4)