parzen {modeest} | R Documentation |
Parzen's Kernel mode estimator
Description
Parzen's kernel mode estimator is the value maximizing the kernel density estimate.
Usage
parzen(
x,
bw = NULL,
kernel = "gaussian",
abc = FALSE,
tolerance = .Machine$double.eps^0.25,
...
)
Arguments
x |
numeric. Vector of observations. |
bw |
numeric. The smoothing bandwidth to be used. |
kernel |
character. The kernel to be used. For available kernels see
|
abc |
logical. If |
tolerance |
numeric. Desired accuracy in the |
... |
If |
Details
If kernel = "uniform"
, the naive
mode estimate is returned.
Value
parzen
returns a numeric value, the mode estimate.
If abc = TRUE
, the x
value maximizing the density
estimate is returned. Otherwise, the optim
method is used to perform maximization, and the attributes:
'value', 'counts', 'convergence' and 'message', coming from
the optim
method, are added to the result.
Note
The user may call parzen
through
mlv(x, method = "kernel", ...)
or mlv(x, method = "parzen", ...)
.
Presently, parzen
is quite slow.
References
Parzen E. (1962). On estimation of a probability density function and mode. Ann. Math. Stat., 33(3):1065–1076.
Konakov V.D. (1973). On the asymptotic normality of the mode of multidimensional distributions. Theory Probab. Appl., 18:794-803.
Eddy W.F. (1980). Optimum kernel estimators of the mode. Ann. Statist., 8(4):870-882.
Eddy W.F. (1982). The Asymptotic Distributions of Kernel Estimators of the Mode. Z. Wahrsch. Verw. Gebiete, 59:279-290.
Romano J.P. (1988). On weak convergence and optimality of kernel density estimates of the mode. Ann. Statist., 16(2):629-647.
Abraham C., Biau G. and Cadre B. (2003). Simple Estimation of the Mode of a Multivariate Density. Canad. J. Statist., 31(1):23-34.
Abraham C., Biau G. and Cadre B. (2004). On the Asymptotic Properties of a Simple Estimate of the Mode. ESAIM Probab. Stat., 8:1-11.
See Also
Examples
# Unimodal distribution
x <- rlnorm(10000, meanlog = 3.4, sdlog = 0.2)
## True mode
lnormMode(meanlog = 3.4, sdlog = 0.2)
## Estimate of the mode
mlv(x, method = "kernel", kernel = "gaussian", bw = 0.3, par = shorth(x))