distrMode {modeest} | R Documentation |
Mode of some continuous and discrete distributions
Description
These functions return the mode of the main probability distributions implemented in R.
Usage
distrMode(x, ...)
betaMode(shape1, shape2, ncp = 0)
cauchyMode(location = 0, ...)
chisqMode(df, ncp = 0)
dagumMode(scale = 1, shape1.a, shape2.p)
expMode(...)
fMode(df1, df2)
fiskMode(scale = 1, shape1.a)
frechetMode(location = 0, scale = 1, shape = 1, ...)
gammaMode(shape, rate = 1, scale = 1/rate)
normMode(mean = 0, ...)
gevMode(location = 0, scale = 1, shape = 0, ...)
ghMode(alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)
ghtMode(beta = 0.1, delta = 1, mu = 0, nu = 10)
gldMode(lambda1 = 0, lambda2 = -1, lambda3 = -1/8, lambda4 = -1/8)
gompertzMode(scale = 1, shape)
gpdMode(location = 0, scale = 1, shape = 0)
gumbelMode(location = 0, ...)
hypMode(alpha = 1, beta = 0, delta = 1, mu = 0, pm = c(1, 2, 3, 4))
koenkerMode(location = 0, ...)
kumarMode(shape1, shape2)
laplaceMode(location = 0, ...)
logisMode(location = 0, ...)
lnormMode(meanlog = 0, sdlog = 1)
lomaxMode(...)
maxwellMode(rate)
mvnormMode(mean, ...)
nakaMode(scale = 1, shape)
nigMode(alpha = 1, beta = 0, delta = 1, mu = 0)
paralogisticMode(scale = 1, shape1.a)
paretoMode(scale = 1, ...)
rayleighMode(scale = 1)
stableMode(alpha, beta, gamma = 1, delta = 0, pm = 0, ...)
stableMode2(loc, disp, skew, tail)
tMode(df, ncp)
unifMode(min = 0, max = 1)
weibullMode(shape, scale = 1)
yulesMode(...)
bernMode(prob)
binomMode(size, prob)
geomMode(...)
hyperMode(m, n, k, ...)
nbinomMode(size, prob, mu)
poisMode(lambda)
Arguments
x |
character. The name of the distribution to consider. |
... |
Additional parameters. |
shape1 |
non-negative parameters of the Beta distribution. |
shape2 |
non-negative parameters of the Beta distribution. |
ncp |
non-centrality parameter. |
location |
location and scale parameters. |
df |
degrees of freedom (non-negative, but can be non-integer). |
scale |
location and scale parameters. |
shape1.a |
shape parameters. |
shape2.p |
shape parameters. |
df1 |
degrees of freedom. |
df2 |
degrees of freedom. |
shape |
the location parameter |
rate |
vector of rates. |
mean |
vector of means. |
alpha |
shape parameter |
beta |
shape parameter |
delta |
shape parameter |
mu |
shape parameter |
lambda |
shape parameter |
nu |
a numeric value, the number of degrees of freedom.
Note, |
lambda1 |
are numeric values where
|
lambda2 |
are numeric values where
|
lambda3 |
are numeric values where
|
lambda4 |
are numeric values where
|
pm |
an integer value between |
meanlog |
mean and standard deviation of the distribution
on the log scale with default values of |
sdlog |
mean and standard deviation of the distribution
on the log scale with default values of |
gamma |
value of the index parameter |
loc |
vector of (real) location parameters. |
disp |
vector of (positive) dispersion parameters. |
skew |
vector of skewness parameters (in [-1,1]). |
tail |
vector of parameters (in [1,2]) related to the tail thickness. |
min |
lower and upper limits of the distribution. Must be finite. |
max |
lower and upper limits of the distribution. Must be finite. |
prob |
Probability of success on each trial. |
size |
number of trials (zero or more). |
m |
the number of white balls in the urn. |
n |
number of observations. If |
k |
the number of balls drawn from the urn. |
Value
A numeric value is returned, the (true) mode of the distribution.
Note
Some functions like normMode
or cauchyMode
, which relate
to symmetric distributions, are trivial, but are implemented for the sake of
exhaustivity.
Author(s)
ghMode
and ghtMode
are from
package fBasics;
hypMode
was written by David Scott;
gldMode
, nigMode
and
stableMode
were written by Diethelm Wuertz.
See Also
mlv
for the estimation of the mode;
the documentation of the related distributions
Beta
, GammaDist
, etc.
Examples
## Beta distribution
curve(dbeta(x, shape1 = 2, shape2 = 3.1),
xlim = c(0,1), ylab = "Beta density")
M <- betaMode(shape1 = 2, shape2 = 3.1)
abline(v = M, col = 2)
mlv("beta", shape1 = 2, shape2 = 3.1)
## Lognormal distribution
curve(stats::dlnorm(x, meanlog = 3, sdlog = 1.1),
xlim = c(0, 10), ylab = "Lognormal density")
M <- lnormMode(meanlog = 3, sdlog = 1.1)
abline(v = M, col = 2)
mlv("lnorm", meanlog = 3, sdlog = 1.1)
curve(VGAM::dpareto(x, scale = 1, shape = 1), xlim = c(0, 10))
abline(v = paretoMode(scale = 1), col = 2)
## Poisson distribution
poisMode(lambda = 6)
poisMode(lambda = 6.1)
mlv("poisson", lambda = 6.1)