test.HJG {mnt} | R Documentation |
Henze-Jimenes-Gamero test of multivariate normality
Description
Computes the multivariate normality test of Henze and Jimenes-Gamero (2019) in dependence of a tuning parameter a
.
Usage
test.HJG(data, a = 1, MC.rep = 10000, alpha = 0.05)
Arguments
data |
a n x d matrix of d dimensional data vectors. |
a |
positive numeric number (tuning parameter). |
MC.rep |
number of repetitions for the Monte Carlo simulation of the critical value. |
alpha |
level of significance of the test. |
Details
This functions evaluates the teststatistic with the given data and the specified tuning parameter a
.
Each row of the data Matrix contains one of the n (multivariate) sample with dimension d. To ensure that the computation works properly
n \ge d+1
is needed. If that is not the case the test returns an error.
Value
a list containing the value of the test statistic, the approximated critical value and a test decision on the significance level alpha
:
$Test
name of the test.
$param
value tuning parameter.
$Test.value
the value of the test statistic.
$cv
the approximated critical value.
$Decision
the comparison of the critical value and the value of the test statistic.
#'
References
Henze, N., Jimenez-Gamero, M.D. (2019) "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function", TEST, 28, 499-521, DOI
See Also
Examples
test.HJG(MASS::mvrnorm(50,c(0,1),diag(1,2)),a=1.5,MC.rep=500)