dmnorm {mnorm} | R Documentation |
Density of (conditional) multivariate normal distribution
Description
This function calculates and differentiates density of (conditional) multivariate normal distribution.
Usage
dmnorm(
x,
mean,
sigma,
given_ind = numeric(),
log = FALSE,
grad_x = FALSE,
grad_sigma = FALSE,
is_validation = TRUE,
control = NULL,
n_cores = 1L
)
Arguments
x |
numeric vector representing the point at which density
should be calculated. If |
mean |
numeric vector representing expectation of multivariate normal vector (distribution). |
sigma |
positively defined numeric matrix representing covariance matrix of multivariate normal vector (distribution). |
given_ind |
numeric vector representing indexes of multivariate
normal vector which are conditioned at values of |
log |
logical; if |
grad_x |
logical; if |
grad_sigma |
logical; if |
is_validation |
logical value indicating whether input
arguments should be validated. Set it to |
control |
a list of control parameters. See Details. |
n_cores |
positive integer representing the number of CPU cores
used for parallel computing. Currently it is not recommended to set
|
Details
Consider notations from the Details section of
cmnorm
. The function calculates density
f(x^{(d)}|x^{(g)})
of conditioned multivariate normal vector
X_{I_{d}} | X_{I_{g}} = x^{(g)}
. Where x^{(d)}
is a subvector of
x
associated with X_{I_{d}}
i.e. unconditioned components.
Therefore x[given_ind]
represents x^{(g)}
while
x[-given_ind]
is x^{(d)}
.
If grad_x
is TRUE
then function additionally estimates the
gradient respect to both unconditioned and conditioned components:
\nabla f(x^{(d)}|x^{(g)})=
\left(\frac{\partial f(x^{(d)}|x^{(g)})}{\partial x_{1}}
,...,
\frac{\partial f(x^{(d)}|x^{(g)})}{\partial x_{m}}\right),
where each x_{i}
belongs either to x^{(d)}
or x^{(g)}
depending on whether i\in I_{d}
or i\in I_{g}
correspondingly.
In particular subgradients of density function respect to x^{(d)}
and x^{(g)}
are of the form:
\nabla_{x^{(d)}}\ln f(x^{(d)}|x^{(g)}) =
-\left(x^{(d)}-\mu_{c}\right)\Sigma_{c}^{-1}
\nabla_{x^{(g)}}\ln f(x^{(d)}|x^{(g)}) =
-\nabla_{x^{(d)}}f(x^{(d)}|x^{(g)})\Sigma_{d,g}\Sigma_{g,g}^{-1}
If grad_sigma
is TRUE
then function additionally estimates
the gradient respect to the elements of covariance matrix \Sigma
.
For i\in I_{d}
and j\in I_{d}
the function calculates:
\frac{\partial \ln f(x^{(d)}|x^{(g)})}{\partial \Sigma_{i, j}} =
\left(\frac{\partial \ln f(x^{(d)}|x^{(g)})}{\partial x_{i}} \times
\frac{\partial \ln f(x^{(d)}|x^{(g)})}{\partial x_{j}} -
\Sigma_{c,(i, j)}^{-1}\right) /
\left(1 + I(i=j)\right),
where I(i=j)
is an indicator function which equals 1
when
the condition i=j
is satisfied and 0
otherwise.
For i\in I_{d}
and j\in I_{g}
the following formula is used:
\frac{\partial \ln f(x^{(d)}|x^{(g)})}{\partial \Sigma_{i, j}} =
-\frac{\partial \ln f(x^{(d)}|x^{(g)})}{\partial x_{i}} \times
\left(\left(x^{(g)}-\mu_{g}\right)\Sigma_{g,g}^{-1}\right)_{q_{g}(j)}-
-\sum\limits_{k=1}^{n_{d}}(1+I(q_{d}(i)=k))\times
(\Sigma_{d,g}\Sigma_{g,g}^{-1})_{k,q_{g}(j)}\times
\frac{\partial \ln f(x^{(d)}|x^{(g)})}{\partial \Sigma_{i, q^{-1}_{d}(k)}},
where q_{g}(j)=\sum\limits_{k=1}^{m} I\left(I_{g,k} \leq j\right)
and q_{d}(i)=\sum\limits_{k=1}^{m} I\left(I_{d,k} \leq i\right)
represent the order of the i
-th and j
-th elements
in I_{g}
and I_{d}
correspondingly i.e.
x_{i}=x^{(d)}_{q_{d}(i)}=x_{I_{d, q_{d}(i)}}
and
x_{j}=x^{(g)}_{q_{g}(j)}=x_{I_{g, q_{g}(j)}}
.
Note that q_{g}(j)^{-1}
and q_{d}(i)^{-1}
are inverse functions.
Number of conditioned and unconditioned components are denoted by
n_{g}=\sum\limits_{k=1}^{m}I(k\in I_{g})
and
n_{d}=\sum\limits_{k=1}^{m}I(k\in I_{d})
respectively.
For the case i\in I_{g}
and j\in I_{d}
the formula is similar.
For i\in I_{g}
and j\in I_{g}
the following formula is used:
\frac{\partial \ln f(x^{(d)}|x^{(g)})}{\partial \Sigma_{i, j}} =
-\nabla_{x^{(d)}}\ln f(x^{(d)}|x^{(g)})\times
\left(x^{(g)}\times(\Sigma_{d,g} \times \Sigma_{g,g}^{-1} \times I_{g}^{*} \times
\Sigma_{g,g}^{-1})^{T}\right)^T -
-\sum\limits_{k_{1}=1}^{n_{d}}\sum\limits_{k_{2}=k_{1}}^{n_{d}}
\frac{\partial \ln f(x^{(d)}|x^{(g)})}
{\partial \Sigma_{q_{d}(k_{1})^{-1}, q_{d}(k_{2})^{-1}}}
\left(\Sigma_{d,g} \times \Sigma_{g,g}^{-1} \times I_{g}^{*} \times
\Sigma_{g,g}^{-1}\times\Sigma_{d,g}^T\right)_{q_{d}(k_{1})^{-1},
q_{d}(k_{2})^{-1}},
where I_{g}^{*}
is a square n_{g}
-dimensional matrix of
zeros except I_{g,(i,j)}^{*}=I_{g,(j,i)}^{*}=1
.
Argument given_ind
represents I_{g}
and it should not
contain any duplicates. The order of given_ind
elements
does not matter so it has no impact on the output.
More details on abovementioned differentiation formulas could be found in the appendix of E. Kossova and B. Potanin (2018).
Currently control
has no input arguments intended for
the users. This argument is used for some internal purposes
of the package.
Value
This function returns an object of class "mnorm_dmnorm".
An object of class "mnorm_dmnorm" is a list containing the
following components:
-
den
- density function value atx
. -
grad_x
- gradient of density respect tox
ifgrad_x
orgrad_sigma
input argument is set toTRUE
. -
grad_sigma
- gradient respect to the elements ofsigma
ifgrad_sigma
input argument is set toTRUE
.
If log
is TRUE
then den
is a log-density
so output grad_x
and grad_sigma
are calculated respect
to the log-density.
Output grad_x
is a Jacobian matrix which rows are gradients of
the density function calculated for each row of x
. Therefore
grad_x[i, j]
is a derivative of the density function respect to the
j
-th argument at point x[i, ]
.
Output grad_sigma
is a 3D array such that grad_sigma[i, j, k]
is a partial derivative of the density function respect to the
sigma[i, j]
estimated for the observation x[k, ]
.
References
E. Kossova., B. Potanin (2018). Heckman method and switching regression model multivariate generalization. Applied Econometrics, vol. 50, pages 114-143.
Examples
# Consider multivariate normal vector:
# X = (X1, X2, X3, X4, X5) ~ N(mean, sigma)
# Prepare multivariate normal vector parameters
# expected value
mean <- c(-2, -1, 0, 1, 2)
n_dim <- length(mean)
# correlation matrix
cor <- c( 1, 0.1, 0.2, 0.3, 0.4,
0.1, 1, -0.1, -0.2, -0.3,
0.2, -0.1, 1, 0.3, 0.2,
0.3, -0.2, 0.3, 1, -0.05,
0.4, -0.3, 0.2, -0.05, 1)
cor <- matrix(cor, ncol = n_dim, nrow = n_dim, byrow = TRUE)
# covariance matrix
sd_mat <- diag(c(1, 1.5, 2, 2.5, 3))
sigma <- sd_mat %*% cor %*% t(sd_mat)
# Estimate the density of X at point (-1, 0, 1, 2, 3)
x <- c(-1, 0, 1, 2, 3)
d.list <- dmnorm(x = x, mean = mean, sigma = sigma)
d <- d.list$den
print(d)
# Estimate the density of X at points
# x=(-1, 0, 1, 2, 3) and y=(-1.2, -1.5, 0, 1.2, 1.5)
y <- c(-1.5, -1.2, 0, 1.2, 1.5)
xy <- rbind(x, y)
d.list.1 <- dmnorm(x = xy, mean = mean, sigma = sigma)
d.1 <- d.list.1$den
print(d.1)
# Estimate the density of Xc=(X2, X4, X5 | X1 = -1, X3 = 1) at
# point xd=(0, 2, 3) given conditioning values xg=(-1, 1)
given_ind <- c(1, 3)
d.list.2 <- dmnorm(x = x, mean = mean, sigma = sigma,
given_ind = given_ind)
d.2 <- d.list.2$den
print(d.2)
# Estimate the gradient of density respect to the argument and
# covariance matrix at points 'x' and 'y'
d.list.3 <- dmnorm(x = xy, mean = mean, sigma = sigma,
grad_x = TRUE, grad_sigma = TRUE)
# Gradient respect to the argument
grad_x.3 <- d.list.3$grad_x
# at point 'x'
print(grad_x.3[1, ])
# at point 'y'
print(grad_x.3[2, ])
# Partial derivative at point 'y' respect
# to the 3-rd argument
print(grad_x.3[2, 3])
# Gradient respect to the covariance matrix
grad_sigma.3 <- d.list.3$grad_sigma
# Partial derivative respect to sigma(3, 5) at
# point 'y'
print(grad_sigma.3[3, 5, 2])
# Estimate the gradient of the log-density function of
# Xc=(X2, X4, X5 | X1 = -1, X3 = 1) and Yc=(X2, X4, X5 | X1 = -1.5, X3 = 0)
# respect to the argument and covariance matrix at
# points xd=(0, 2, 3) and yd=(-1.2, 0, 1.5) respectively given
# conditioning values xg=(-1, 1) and yg=(-1.5, 0) correspondingly
d.list.4 <- dmnorm(x = xy, mean = mean, sigma = sigma,
grad_x = TRUE, grad_sigma = TRUE,
given_ind = given_ind, log = TRUE)
# Gradient respect to the argument
grad_x.4 <- d.list.4$grad_x
# at point 'xd'
print(grad_x.4[1, ])
# at point 'yd'
print(grad_x.4[2, ])
# Partial derivative at point 'xd' respect to 'xg[2]'
print(grad_x.4[1, 3])
# Partial derivative at point 'yd' respect to 'yd[5]'
print(grad_x.4[2, 5])
# Gradient respect to the covariance matrix
grad_sigma.4 <- d.list.4$grad_sigma
# Partial derivative respect to sigma(3, 5) at
# point 'yd'
print(grad_sigma.4[3, 5, 2])
# Compare analytical gradients from the previous example with
# their numeric (forward difference) analogues at point 'xd'
# given conditioning 'xg'
delta <- 1e-6
grad_x.num <- rep(NA, 5)
grad_sigma.num <- matrix(NA, nrow = 5, ncol = 5)
for (i in 1:5)
{
x.delta <- x
x.delta[i] <- x[i] + delta
d.list.delta <- dmnorm(x = x.delta, mean = mean, sigma = sigma,
grad_x = TRUE, grad_sigma = TRUE,
given_ind = given_ind, log = TRUE)
grad_x.num[i] <- (d.list.delta$den - d.list.4$den[1]) / delta
for(j in 1:5)
{
sigma.delta <- sigma
sigma.delta[i, j] <- sigma[i, j] + delta
sigma.delta[j, i] <- sigma[j, i] + delta
d.list.delta <- dmnorm(x = x, mean = mean, sigma = sigma.delta,
grad_x = TRUE, grad_sigma = TRUE,
given_ind = given_ind, log = TRUE)
grad_sigma.num[i, j] <- (d.list.delta$den - d.list.4$den[1]) / delta
}
}
# Comparison of gradients respect to the argument
h.x <- cbind(analytical = grad_x.4[1, ], numeric = grad_x.num)
rownames(h.x) <- c("xg[1]", "xd[1]", "xg[2]", "xd[3]", "xd[4]")
print(h.x)
# Comparison of gradients respect to the covariance matrix
h.sigma <- list(analytical = grad_sigma.4[, , 1], numeric = grad_sigma.num)
print(h.sigma)