MatrixT {mniw} | R Documentation |
The Matrix-t distribution.
Description
Density and sampling for the Matrix-t distribution.
Usage
dMT(X, Lambda, SigmaR, SigmaC, nu, log = FALSE)
rMT(n, Lambda, SigmaR, SigmaC, nu)
Arguments
X |
Argument to the density function. Either a |
Lambda |
Mean parameter Either a |
SigmaR |
Between-row covariance matrix. Either a |
SigmaC |
Between-column covariance matrix Either a |
nu |
Degrees-of-freedom parameter. A scalar or vector of length |
log |
Logical; whether or not to compute the log-density. |
n |
Integer number of random samples to generate. |
Details
The Matrix-T distribution \boldsymbol{X} \sim \textrm{Matrix-T}(\boldsymbol{\Lambda}, \boldsymbol{\Sigma}, \boldsymbol{\Psi}, \nu)
on a random matrix \boldsymbol{X}_{p \times q}
is the marginal distribution of \boldsymbol{X}
in (\boldsymbol{X}, \boldsymbol{V}) \sim \textrm{MNIW}(\boldsymbol{\Lambda}, \boldsymbol{\Sigma}, \boldsymbol{\Psi}, \nu)
, where the Matrix-Normal Inverse-Wishart (MNIW) distribution is defined in mniw
.
Value
A vector length n
for density evaluation, or an array of size p x q x n
for random sampling.