MNIW {mniw} | R Documentation |
Generate samples from the Matrix-Normal Inverse-Wishart distribution.
Description
Generate samples from the Matrix-Normal Inverse-Wishart distribution.
Usage
rMNIW(n, Lambda, Sigma, Psi, nu, prec = FALSE)
rmniw(n, Lambda, Omega, Psi, nu)
Arguments
n |
number of samples. |
Lambda |
A mean matrix of size |
Sigma |
A row-wise variance or precision matrix of size |
Psi |
A scale matrix of size |
nu |
Scalar degrees-of-freedom parameter. |
prec |
Logical; whether or not |
Omega |
A between-row precision matrix of size |
Details
The Matrix-Normal Inverse-Wishart (MNIW) distribution (\boldsymbol{X}, \boldsymbol{V}) \sim \textrm{MNIW}(\boldsymbol{\Lambda}, \boldsymbol{\Sigma}, \boldsymbol{\Psi}, \nu)
on random matrices \boldsymbol{X}_{p \times q}
and symmetric positive-definite \boldsymbol{V}_{q\times q}
is defined as
\begin{array}{rcl}
\boldsymbol{V} & \sim & \textrm{Inverse-Wishart}(\boldsymbol{\Psi}, \nu) \\
\boldsymbol{X} \mid \boldsymbol{V} & \sim & \textrm{Matrix-Normal}(\boldsymbol{\Lambda}, \boldsymbol{\Sigma}, \boldsymbol{V}),
\end{array}
where the Matrix-Normal distribution is defined as the multivariate normal
\textrm{vec}(\boldsymbol{X}) \sim \mathcal{N}(\textrm{vec}(\boldsymbol{\Lambda}), \boldsymbol{V} \otimes \boldsymbol{\Sigma}),
where \textrm{vec}(\boldsymbol{X})
is a vector stacking the columns of \boldsymbol{X}
, and \boldsymbol{V} \otimes \boldsymbol{\Sigma}
denotes the Kronecker product.
rmniw
is a convenience wrapper to rMNIW(Sigma = Omega, prec = TRUE)
, for the common situation in Bayesian inference with conjugate priors when between-row variances are naturally parametrized on the precision scale.
Value
A list with elements:
X
Array of size
p x q x n
random samples from the Matrix-Normal component (see Details).V
Array of size
q x q x n
of random samples from the Inverse-Wishart component.
Examples
# problem dimensions
p <- 2
q <- 3
n <- 10 # number of samples
# parameter specification
Lambda <- matrix(rnorm(p*q),p,q) # single argument
Sigma <- rwish(n, Psi = diag(p), nu = p + rexp(1)) # vectorized argument
Psi <- rwish(n = 1, Psi = diag(q), nu = q + rexp(1)) # single argument
nu <- q + rexp(1)
# simulate n draws
rMNIW(n, Lambda = Lambda, Sigma = Sigma, Psi = Psi, nu = nu)