mmrm_tidiers {mmrm} | R Documentation |
Tidying Methods for mmrm
Objects
Description
These methods tidy the estimates from an mmrm
object into a
summary.
Usage
## S3 method for class 'mmrm'
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)
## S3 method for class 'mmrm'
glance(x, ...)
## S3 method for class 'mmrm'
augment(
x,
newdata = NULL,
interval = c("none", "confidence", "prediction"),
se_fit = (interval != "none"),
type.residuals = c("response", "pearson", "normalized"),
...
)
Arguments
x |
( |
conf.int |
( |
conf.level |
( |
... |
only used by |
newdata |
( |
interval |
( |
se_fit |
( |
type.residuals |
( |
Functions
-
tidy(mmrm)
: derives tidytibble
from anmmrm
object. -
glance(mmrm)
: derivesglance
tibble
from anmmrm
object. -
augment(mmrm)
: derivesaugment
tibble
from anmmrm
object.
See Also
mmrm_methods
, mmrm_tmb_methods
for additional methods.
Examples
fit <- mmrm(
formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID),
data = fev_data
)
# Applying tidy method to return summary table of covariate estimates.
fit |> tidy()
fit |> tidy(conf.int = TRUE, conf.level = 0.9)
# Applying glance method to return summary table of goodness of fit statistics.
fit |> glance()
# Applying augment method to return merged `tibble` of model data, fitted and residuals.
fit |> augment()
fit |> augment(interval = "confidence")
fit |> augment(type.residuals = "pearson")
[Package mmrm version 0.3.12 Index]