| covariance_types {mmrm} | R Documentation |
Covariance Types
Description
Usage
cov_types(
form = c("name", "abbr", "habbr"),
filter = c("heterogeneous", "spatial")
)
Arguments
form |
( |
filter |
( |
Value
A character vector of accepted covariance structure type names and abbreviations.
Abbreviations for Covariance Structures
Common Covariance Structures:
| Structure | Description | Parameters | (i, j) element
|
| ad | Ante-dependence | m
| \sigma^{2}\prod_{k=i}^{j-1}\rho_{k}
|
| adh | Heterogeneous ante-dependence | 2m-1
| \sigma_{i}\sigma_{j}\prod_{k=i}^{j-1}\rho_{k}
|
| ar1 | First-order auto-regressive | 2
| \sigma^{2}\rho^{\left \vert {i-j} \right \vert}
|
| ar1h | Heterogeneous first-order auto-regressive | m+1
| \sigma_{i}\sigma_{j}\rho^{\left \vert {i-j} \right \vert}
|
| cs | Compound symmetry | 2
| \sigma^{2}\left[ \rho I(i \neq j)+I(i=j) \right]
|
| csh | Heterogeneous compound symmetry | m+1
| \sigma_{i}\sigma_{j}\left[ \rho I(i \neq j)+I(i=j) \right]
|
| toep | Toeplitz | m
| \sigma_{\left \vert {i-j} \right \vert +1}
|
| toeph | Heterogeneous Toeplitz | 2m-1
| \sigma_{i}\sigma_{j}\rho_{\left \vert {i-j} \right \vert}
|
| us | Unstructured | m(m+1)/2
| \sigma_{ij}
|
where i and j denote i-th and j-th time points,
respectively, out of total m time points, 1 \leq i, j \leq m.
Note
The ante-dependence covariance structure in this package refers to
homogeneous ante-dependence, while the ante-dependence covariance structure
from SAS PROC MIXED refers to heterogeneous ante-dependence and the
homogeneous version is not available in SAS.
For all non-spatial covariance structures, the time variable must be coded as a factor.
Spatial Covariance structures:
| Structure | Description | Parameters | (i, j) element
|
| sp_exp | spatial exponential | 2
| \sigma^{2}\rho^{-d_{ij}}
|
where d_{ij} denotes the Euclidean distance between time points
i and j.
See Also
Other covariance types:
as.cov_struct(),
cov_struct()