ieimetric {mmpp} | R Documentation |
Compute Inter Event Interval-based Metric Between Marked Point Processes
Description
This metric considers inter event interval for point processes.
Usage
ieimetric(S1, S2, measure = "sim", M = NULL, window.length = NULL,
variant = "spike", abs.tol = .Machine$double.eps^0.25)
Arguments
S1 |
marked point process data. |
S2 |
marked point process data. |
measure |
|
M |
a precision matrix for filter of marks, i.e., exp( - r' M r) is used for filtering marks. It should be symmetric and positive semi-definite. |
window.length |
width of the window used for splitting the original MPP. |
variant |
choose from two variants "spike-weighted" or "time-weighted". |
abs.tol |
absolute tolerance for numerical integration. |
Details
iei
computes inter event interval-based measure between MPP realizations. iei for simple point process does not have any tuning parameter, which can be a desirable property for data analysis. However, it's computational cost is relatively higher than other metrics.
Value
Similarity or distance between two inputs (marked) point process S1 and S2.
Author(s)
Hideitsu Hino hinohide@cs.tsukuba.ac.jp, Ken Takano, Yuki Yoshikawa, and Noboru Murata
References
T. Kreuz, J.S. Haas, A. Morelli, H.D.I. Abarbanel, and A. Politi. Measuring spike train synchrony, Journal of Neuroscience Methods, Vol. 165(1), pp. 151-161, 2007.
Examples
##The aftershock data of 26th July 2003 earthquake of M6.2 at the northern Miyagi-Ken Japan.
data(Miyagi20030626)
## time longitude latitude depth magnitude
## split events by 7-hour
sMiyagi <- splitMPP(Miyagi20030626,h=60*60*7,scaleMarks=TRUE)$S
N <- 5
sMat <- matrix(0,N,N)
cat("calculating intensity inner product...")
for(i in 1:(N)){
cat(i," ")
for(j in i:N){
S1 <- sMiyagi[[i]]$time;S2 <- sMiyagi[[j]]$time
sMat[i,j] <- ieimetric(S1,S2,M=diag(1,4))
}
}
sMat <- sMat+t(sMat)
tmpd <- diag(sMat) <- diag(sMat)/2
sMat <- sMat/sqrt(outer(tmpd,tmpd))
image(sMat)