| mmmgee {mmmgee} | R Documentation |
Covariance Matrix Estimation for Multiple Marginal GEE Models
Description
Calculate the covariance matrix for a stacked vector of regression coefficients
from multiple marginal GEE models fitted with geem2.
Usage
mmmgee(x, biascorr = FALSE)
Arguments
x |
a list of |
biascorr |
logical, if |
Value
A list with class mmmgee containing the following components:
betaThe stacked vector of regression coefficient estimates from the models in
x.VThe estimated covariance matrix of the regression coefficient estimates.
AThe outer component of
V=ABA.BThe inner component of
V=ABA.biascorrThe value of the input argument
biascorr(logical).nA vector with the number of clusters in each model in
x.pA vector with number of regression coefficients in each model in
x.
Author(s)
Robin Ristl, robin.ristl@meduniwien.ac.at
References
Lloyd A. Mancl, Timothy A. DeRouen. A covariance estimator for GEE with improved small sample properties. Biometrics, 2001, 57(1):126-134.
See Also
Examples
data(keratosis)
m1<-geem2(clearance~trt,id=id,data=keratosis,family=binomial,corstr="independence")
m2<-geem2(pain~trt,id=id,data=keratosis[keratosis$lesion==1,],family=gaussian,corstr="independence")
mmmgee(x=list(m1,m2),biascorr=TRUE)