mmmgee {mmmgee} | R Documentation |
Covariance Matrix Estimation for Multiple Marginal GEE Models
Description
Calculate the covariance matrix for a stacked vector of regression coefficients
from multiple marginal GEE models fitted with geem2
.
Usage
mmmgee(x, biascorr = FALSE)
Arguments
x |
a list of |
biascorr |
logical, if |
Value
A list with class mmmgee
containing the following components:
beta
The stacked vector of regression coefficient estimates from the models in
x
.V
The estimated covariance matrix of the regression coefficient estimates.
A
The outer component of
V=ABA
.B
The inner component of
V=ABA
.biascorr
The value of the input argument
biascorr
(logical).n
A vector with the number of clusters in each model in
x
.p
A vector with number of regression coefficients in each model in
x
.
Author(s)
Robin Ristl, robin.ristl@meduniwien.ac.at
References
Lloyd A. Mancl, Timothy A. DeRouen. A covariance estimator for GEE with improved small sample properties. Biometrics, 2001, 57(1):126-134.
See Also
Examples
data(keratosis)
m1<-geem2(clearance~trt,id=id,data=keratosis,family=binomial,corstr="independence")
m2<-geem2(pain~trt,id=id,data=keratosis[keratosis$lesion==1,],family=gaussian,corstr="independence")
mmmgee(x=list(m1,m2),biascorr=TRUE)