estim {mmeln} | R Documentation |
Maximum Likelihood estimation of the model parameters
Description
Compute the MLE of the model parameters using the E-M (Expectation-Maximization) algorithm
Usage
## S3 method for class 'mmeln'
estim(X,...,mu=NULL,tau=NULL,sigma=NULL,random.start=FALSE,iterlim=500,tol=1e-8)
Arguments
X |
An object of type mmeln containing the design of the model, see mmeln |
... |
For the moments no other arguments can be added |
mu |
A list of length X$G containing the starting value for the location parameters |
tau |
The starting value for the mixture parameters |
sigma |
A list of length X$G containing the starting value for the covariances parameters |
random.start |
A True/False value indicating if the starting parameters should be given at random. If true the starting values are not needed. |
iterlim |
The maximum number of iterations allowed |
tol |
Tolerance, degree of precision required to stop the iterative process |
Details
Methods estim.mmeln... are used by the estim function but are of no use outside this method.
Value
Retourne un objet de type "mmeln" & "mmelnSOL" les arguments suivants :
obj$Y |
The data matrix |
obj$G |
The number of groups |
obj$p |
Number of column in Y |
obj$N |
Number of row in Y |
obj$Xg |
The list of location design matrices |
obj$pl |
The number of location parameters |
obj$Z |
Mixture design matrix |
obj$pm |
The number of mixture parameters |
obj$cov |
Covariance type |
obj$equalcov |
logical value indicating if covariance is equal across group |
obj$pc |
The number of covariance parameters |
Author(s)
Charles-Édouard Giguère
References
McLachlan, G. & Peel, D. (2000), Finite mixture models,Wiley
Flury, B. D. (1997), A first course in multivariate statistics, Springer
Pinheiro J. C. and Bates D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer
Srivastava, M.S. (2002), Methods of Multivariate Statistics, WILEY
Lindstrom M. J. and Bates D. M. (1988), Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-MeasuresData, Journal of the American Statistical Association,American Statistical Association,V. 83,I. 404, P. 1014-1022
See Also
Examples
data(exY)
### estimation of the parameters of the mixture
temps=0:2
mmeln1=mmeln(Y, G = 3, form.loc = list(~temps, ~temps + I(temps^2),
~temps + I(temps^2)), form.mel = ~SEXE, cov = "CS")
mmelnSOL1=estim(mmeln1,mu = list(c(1,1), c(2,0,0), c(3,0,0)),
tau = c(0,0,0,0), sigma = list(c(1,0), c(1,0), c(1,0)))