msef {mme} | R Documentation |
Analytic MSE for Model 1
Description
This function calculates the analytic MSE for the multinomial mixed model with one independent random effect per category
of the response variable (Model 1). See Lopez-Vizcaino et al. (2013), section 4, for details. The formulas
of Prasad and Rao (1990) are adapted to Model 1. This function uses the output of modelfit1
.
Usage
msef(pp, X, Z, resul, MM, M)
Arguments
resul |
the output of the function |
X |
list of matrices with the auxiliary variables obtained from |
Z |
design matrix of random effects obtained from |
pp |
vector with the number of the auxiliary variables per category. |
M |
vector with the area sample sizes. |
MM |
vector with the population sample sizes. |
Value
mse is a matrix with the MSE estimator calculated by adapting the explicit formulas of Prasad and Rao (1990).
References
Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small area estimation of labour force indicators. Statistical Modelling, 13, 153-178.
Prasad, NGN, Rao, JNK (1990).The estimation of the mean squared error of small area estimators. Journal of the American Statistical Association, 85, 163-171.
See Also
data.mme
, initial.values
,
wmatrix
, phi.mult
,
prmu
, phi.direct
,
sPhikf
, modelfit1
,
Fbetaf
, ci
,
mseb
.
Examples
require(Matrix)
k=3 #number of categories of the response variable
pp=c(1,1) #vector with the number of auxiliary variables in each category
data(simdata) #data
mod=1 # type of model
datar=data.mme(simdata,k,pp,mod)
# Model fit
result=modelfit1(pp,datar$Xk,datar$X,datar$Z,datar$initial,datar$y[,1:(k-1)],
datar$n,datar$N)
#Analytic MSE
mse=msef(pp,datar$X,datar$Z,result,datar$N,datar$n)