ci {mme} | R Documentation |
Standard deviation and p-values of the estimated model parameters
Description
This function calculates the standard deviations and the p-values
of the estimated model parameters. The standard deviations are obtained from the asymptotic Fisher information matrix in the fitting
algorithms modelfit1
, modelfit2
, modelfit3
,
depending of the current multinomial mixed model.
Usage
ci(a, F)
Arguments
a |
vector with the estimated parameters obtained from |
F |
inverse of the Fisher Information Matrix obtained from |
Value
A list containing the following components.
Std.dev |
vector with the standard deviations of the parameters. The parameters are sorted per category. |
p.value |
vector with the p-values of the parameters for testing H0:a=0. |
References
Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small area estimation of labour force indicators. Statistical Modelling, 13, 153-178.
See Also
modelfit1
, modelfit2
,
modelfit3
.
Examples
k=3 #number of categories of the response variable
pp=c(1,1) #vector with the number of auxiliary variables in each category
data(simdata) #data
mod=1 #Type of model
datar=data.mme(simdata,k,pp,mod)
#Model fit
result=modelfit1(pp,datar$Xk,datar$X,datar$Z,datar$initial,datar$y[,1:(k-1)],
datar$n,datar$N)
beta=result[[8]][,1] #fixed effects
Fisher=result[[3]] #Fisher information matrix
##Standard deviation and p-values
res=ci(beta,Fisher)