summary.mltsfit {mlts} | R Documentation |
Create a summary of a fitted model with class mltsfit
Description
Create a summary of a fitted model with class mltsfit
Usage
## S3 method for class 'mltsfit'
summary(
object,
priors = FALSE,
se = FALSE,
prob = 0.95,
bpe = c("mean", "median"),
digits = 3,
flag_signif = FALSE,
...
)
Arguments
object |
An object of class |
priors |
Add prior information (default = FALSE). |
se |
Logical. Should the Monte Carlo Standard Error be included
in the summary? Defaults to |
prob |
A value between 0 and 1 to indicate the width of the credible interval. Default is .95. |
bpe |
Bayesian posterior estimate can be either "mean" (the default) or the "median" of the posterior distribution. |
digits |
Number of digits. |
flag_signif |
Add significance flags based on |
... |
Additional arguments affecting the summary produced. |
Value
A summary of model parameters.
Examples
# build simple vector-autoregressive mlts model for two time-series variables
var_model <- mlts_model(q = 2)
# fit model with (artificial) dataset ts_data
fit <- mlts_fit(
model = var_model,
data = ts_data,
ts = c("Y1", "Y2"), # time-series variables
id = "ID", # identifier variable
time = "time",
tinterval = 1 # interval for approximation of continuous-time dynamic model,
)
# inspect model summary
summary(fit)
[Package mlts version 1.0.0 Index]