MV_critical {mlrv} | R Documentation |
Statistics-adapted values for extended minimum volatility selection.
Description
Calculation of the variance of the bootstrap statistics for the extended minimum volatility selection.
Usage
MV_critical(
y,
data,
R,
gridm,
gridtau,
type = 1L,
cvalue = 0.1,
B = 100L,
lrvmethod = 1L,
ind = 2L,
rescale = 0L
)
Arguments
y |
vector, as used in the Heter_LRV |
data |
list, a list of data |
R |
a cube of standard.normal random variables. |
gridm |
vector, a grid of candidate m's. |
gridtau |
vector, a grid of candidate tau's. |
type |
integer, 1 KPSS 2 RS 3 VS 4 KS |
cvalue |
double, 1-quantile for the calculation of bootstrap variance, default 0.1. |
B |
integer, number of iterations for the calculation of bootstrap variance |
lrvmethod |
integer, see also Heter_LRV |
ind |
integer, the type of kernel, see also Heter_LRV |
rescale |
bool, whether to rescale when positiveness of the matrix is not obtained. default 0 |
Value
a matrix of critical values
References
Bai, L., & Wu, W. (2024). Difference-based covariance matrix estimation in time series nonparametric regression with application to specification tests. Biometrika, asae013.
See Also
Heter_LRV
Examples
###with Long memory parameter 0.2
param = list(d = -0.2, heter = 2,
tvd = 0, tw = 0.8, rate = 0.1, cur = 1,
center = 0.3, ma_rate = 0, cov_tw = 0.2,
cov_rate = 0.1, cov_center = 0.1,
all_tw = 1, cov_trend = 0.7)
n = 1000
data = Qct_reg(n, param)
p = ncol(data$x)
t = (1:n)/n
B_c = 100 ##small value for testing
Rc = array(rnorm(n*p*B_c),dim = c(p,B_c,n))
result1 = LocLinear(0.2, t, data$y, data$x)
critical <- MV_critical(data$y, result1, Rc, c(3,4,5), c(0.2, 0.25, 0.3))