cpoFilterKruskal {mlrCPO} | R Documentation |
Filter Features: “kruskal.test”
Description
This is a CPOConstructor
to be used to create a
CPO
. It is called like any R function and returns
the created CPO
.
Filter “kruskal.test” applies a Kruskal-Wallis rank sum test of the null hypothesis that the location parameters of the distribution of a feature are the same in each class and considers the test statistic as an variable importance measure: if the location parameters do not differ in at least one case, i.e., the null hypothesis cannot be rejected, there is little evidence that the corresponding feature is suitable for classification.
Usage
cpoFilterKruskal(
perc = NULL,
abs = NULL,
threshold = NULL,
id,
export = "export.default",
affect.type = NULL,
affect.index = integer(0),
affect.names = character(0),
affect.pattern = NULL,
affect.invert = FALSE,
affect.pattern.ignore.case = FALSE,
affect.pattern.perl = FALSE,
affect.pattern.fixed = FALSE
)
Arguments
perc |
[ |
abs |
[ |
threshold |
[ |
id |
[ |
export |
[ |
affect.type |
[ |
affect.index |
[ |
affect.names |
[ |
affect.pattern |
[ |
affect.invert |
[ |
affect.pattern.ignore.case |
[ |
affect.pattern.perl |
[ |
affect.pattern.fixed |
[ |
Value
[CPO
].
General CPO info
This function creates a CPO object, which can be applied to
Task
s, data.frame
s, link{Learner}
s
and other CPO objects using the %>>%
operator.
The parameters of this object can be changed after creation
using the function setHyperPars
. The other
hyper-parameter manipulating functins, getHyperPars
and getParamSet
similarly work as one expects.
If the “id” parameter is given, the hyperparameters will have this id as aprefix; this will, however, not change the parameters of the creator function.
Calling a CPOConstructor
CPO constructor functions are called with optional values of parameters, and additional “special” optional values.
The special optional values are the id
parameter, and the affect.*
parameters. The affect.*
parameters
enable the user to control which subset of a given dataset is affected. If no affect.*
parameters are given, all
data features are affected by default.
See Also
Other filter:
cpoFilterAnova()
,
cpoFilterCarscore()
,
cpoFilterChiSquared()
,
cpoFilterFeatures()
,
cpoFilterGainRatio()
,
cpoFilterInformationGain()
,
cpoFilterLinearCorrelation()
,
cpoFilterMrmr()
,
cpoFilterOneR()
,
cpoFilterPermutationImportance()
,
cpoFilterRankCorrelation()
,
cpoFilterRelief()
,
cpoFilterRfCImportance()
,
cpoFilterRfImportance()
,
cpoFilterRfSRCImportance()
,
cpoFilterRfSRCMinDepth()
,
cpoFilterSymmetricalUncertainty()
,
cpoFilterUnivariate()
,
cpoFilterVariance()
,
randomForestSRC_filters
Other CPOs:
cpoApplyFunRegrTarget()
,
cpoApplyFun()
,
cpoAsNumeric()
,
cpoCache()
,
cpoCbind()
,
cpoCollapseFact()
,
cpoDropConstants()
,
cpoDropMostlyConstants()
,
cpoDummyEncode()
,
cpoFilterAnova()
,
cpoFilterCarscore()
,
cpoFilterChiSquared()
,
cpoFilterFeatures()
,
cpoFilterGainRatio()
,
cpoFilterInformationGain()
,
cpoFilterLinearCorrelation()
,
cpoFilterMrmr()
,
cpoFilterOneR()
,
cpoFilterPermutationImportance()
,
cpoFilterRankCorrelation()
,
cpoFilterRelief()
,
cpoFilterRfCImportance()
,
cpoFilterRfImportance()
,
cpoFilterRfSRCImportance()
,
cpoFilterRfSRCMinDepth()
,
cpoFilterSymmetricalUncertainty()
,
cpoFilterUnivariate()
,
cpoFilterVariance()
,
cpoFixFactors()
,
cpoIca()
,
cpoImpactEncodeClassif()
,
cpoImpactEncodeRegr()
,
cpoImputeConstant()
,
cpoImputeHist()
,
cpoImputeLearner()
,
cpoImputeMax()
,
cpoImputeMean()
,
cpoImputeMedian()
,
cpoImputeMin()
,
cpoImputeMode()
,
cpoImputeNormal()
,
cpoImputeUniform()
,
cpoImpute()
,
cpoLogTrafoRegr()
,
cpoMakeCols()
,
cpoMissingIndicators()
,
cpoModelMatrix()
,
cpoOversample()
,
cpoPca()
,
cpoProbEncode()
,
cpoQuantileBinNumerics()
,
cpoRegrResiduals()
,
cpoResponseFromSE()
,
cpoSample()
,
cpoScaleMaxAbs()
,
cpoScaleRange()
,
cpoScale()
,
cpoSelect()
,
cpoSmote()
,
cpoSpatialSign()
,
cpoTransformParams()
,
cpoWrap()
,
makeCPOCase()
,
makeCPOMultiplex()