mlr_tuning_spaces_rbv2 {mlr3tuningspaces} | R Documentation |
RandomBot V2 Tuning Spaces
Description
Tuning spaces from the Binder (2020) article.
glmnet tuning space
alpha
[0, 1]
s
[1e-04, 1000]
Logscale
kknn tuning space
k
[1, 30]
ranger tuning space
num.trees
[1, 2000]
replace [TRUE,FALSE]
sample.fraction
[0.1, 1]
mtry.ratio
[0, 1]
respect.unordered.factors [“ignore”, “order”, “partition”]
min.node.size
[1, 100]
splitrule [“gini”, “extratrees”]
num.random.splits
[1, 100]
mtry.power
is replaced by mtry.ratio
.
rpart tuning space
cp
[1e-04, 1]
Logscalemaxdepth
[1, 30]
minbucket
[1, 100]
minsplit
[1, 100]
svm tuning space
kernel [“linear”, “polynomial”, “radial”]
cost
[1e-04, 1000]
Logscalegamma
[1e-04, 1000]
Logscaletolerance
[1e-04, 2]
Logscaledegree
[2, 5]
xgboost tuning space
booster [“gblinear”, “gbtree”, “dart”]
nrounds
[7, 2981]
Logscaleeta
[1e-04, 1]
Logscalegamma
[1e-05, 7]
Logscalelambda
[1e-04, 1000]
Logscalealpha
[1e-04, 1000]
Logscalesubsample
[0.1, 1]
max_depth
[1, 15]
min_child_weight
[1, 100]
Logscalecolsample_bytree
[0.01, 1]
colsample_bylevel
[0.01, 1]
rate_drop
[0, 1]
skip_drop
[0, 1]
Source
Binder M, Pfisterer F, Bischl B (2020). “Collecting Empirical Data About Hyperparameters for Data Driven AutoML.” https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_63.pdf.