| mlr_tuning_spaces_rbv1 {mlr3tuningspaces} | R Documentation |
RandomBot Tuning Spaces
Description
Tuning spaces from the Kuehn (2018) article.
glmnet tuning space
alpha
[0, 1]s
[1e-04, 1000]Logscale
kknn tuning space
k
[1, 30]
ranger tuning space
num.trees
[1, 2000]replace [TRUE,FALSE]
sample.fraction
[0.1, 1]mtry.ratio
[0, 1]respect.unordered.factors [“ignore”, “order”]
min.node.size
[1, 100]
The tuning space of the ranger learner is slightly different from the original paper.
The hyperparameter mtry.power is replaced by mtry.ratio and min.node.size is explored in a range from 1 to 100.
rpart tuning space
cp
[0, 1]maxdepth
[1, 30]minbucket
[1, 60]minsplit
[1, 60]
svm tuning space
kernel [“linear”, “polynomial”, “radial”]
cost
[1e-04, 1000]Logscalegamma
[1e-04, 1000]Logscaledegree
[2, 5]
xgboost tuning space
nrounds
[1, 5000]eta
[1e-04, 1]Logscalesubsample
[0, 1]booster [“gblinear”, “gbtree”, “dart”]
max_depth
[1, 15]min_child_weight
[1, 100]Logscalecolsample_bytree
[0, 1]colsample_bylevel
[0, 1]lambda
[1e-04, 1000]Logscalealpha
[1e-04, 1000]Logscale
Source
Kuehn D, Probst P, Thomas J, Bischl B (2018). “Automatic Exploration of Machine Learning Experiments on OpenML.” 1806.10961, https://arxiv.org/abs/1806.10961.