mlr_tuning_spaces_rbv1 {mlr3tuningspaces} | R Documentation |
RandomBot Tuning Spaces
Description
Tuning spaces from the Kuehn (2018) article.
glmnet tuning space
alpha
s
Logscale
kknn tuning space
k
ranger tuning space
num.trees
replace [TRUE,FALSE]
sample.fraction
mtry.ratio
respect.unordered.factors [“ignore”, “order”]
min.node.size
The tuning space of the ranger learner is slightly different from the original paper.
The hyperparameter mtry.power
is replaced by mtry.ratio
and min.node.size
is explored in a range from 1 to 100.
rpart tuning space
cp
maxdepth
minbucket
minsplit
svm tuning space
kernel [“linear”, “polynomial”, “radial”]
cost
Logscale
gamma
Logscale
degree
xgboost tuning space
nrounds
eta
Logscale
subsample
booster [“gblinear”, “gbtree”, “dart”]
max_depth
min_child_weight
Logscale
colsample_bytree
colsample_bylevel
lambda
Logscale
alpha
Logscale
Source
Kuehn D, Probst P, Thomas J, Bischl B (2018). “Automatic Exploration of Machine Learning Experiments on OpenML.” 1806.10961, https://arxiv.org/abs/1806.10961.