mlr_tuning_spaces_default {mlr3tuningspaces} | R Documentation |
Default Tuning Spaces
Description
Tuning spaces from the Bischl (2021) article.
glmnet tuning space
s
Logscale
alpha
kknn tuning space
k
Logscale
distance
kernel [“rectangular”, “optimal”, “epanechnikov”, “biweight”, “triweight”, “cos”, “inv”, “gaussian”, “rank”]
ranger tuning space
mtry.ratio
replace [TRUE,FALSE]
sample.fraction
num.trees
rpart tuning space
minsplit
Logscale
minbucket
Logscale
cp
Logscale
svm tuning space
cost
Logscale
kernel [“polynomial”, “radial”, “sigmoid”, “linear”]
degree
gamma
Logscale
xgboost tuning space
eta
Logscale
nrounds
max_depth
colsample_bytree
colsample_bylevel
lambda
Logscale
alpha
Logscale
subsample
Source
Bischl B, Binder M, Lang M, Pielok T, Richter J, Coors S, Thomas J, Ullmann T, Becker M, Boulesteix A, Deng D, Lindauer M (2021). “Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges.” 2107.05847, https://arxiv.org/abs/2107.05847.