| tune_nested {mlr3tuning} | R Documentation | 
Function for Nested Resampling
Description
Function to conduct nested resampling.
Usage
tune_nested(
  tuner,
  task,
  learner,
  inner_resampling,
  outer_resampling,
  measure = NULL,
  term_evals = NULL,
  term_time = NULL,
  terminator = NULL,
  search_space = NULL,
  store_tuning_instance = TRUE,
  store_benchmark_result = TRUE,
  store_models = FALSE,
  check_values = FALSE,
  callbacks = NULL
)
Arguments
| tuner | (Tuner) | 
| task | (mlr3::Task) | 
| learner | (mlr3::Learner) | 
| inner_resampling | (mlr3::Resampling) | 
| outer_resampling | mlr3::Resampling) | 
| measure | (mlr3::Measure) | 
| term_evals | ( | 
| term_time | ( | 
| terminator | (bbotk::Terminator) | 
| search_space | (paradox::ParamSet) | 
| store_tuning_instance | ( | 
| store_benchmark_result | ( | 
| store_models | ( | 
| check_values | ( | 
| callbacks | (list of mlr3misc::Callback) | 
Value
Examples
# Nested resampling on Palmer Penguins data set
rr = tune_nested(
  tuner = tnr("random_search", batch_size = 2),
  task = tsk("penguins"),
  learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE)),
  inner_resampling = rsmp ("holdout"),
  outer_resampling = rsmp("cv", folds = 2),
  measure = msr("classif.ce"),
  term_evals = 2)
# Performance scores estimated on the outer resampling
rr$score()
# Unbiased performance of the final model trained on the full data set
rr$aggregate()