mlr3tuning-package {mlr3tuning} | R Documentation |
mlr3tuning: Hyperparameter Optimization for 'mlr3'
Description
Hyperparameter optimization package of the 'mlr3' ecosystem. It features highly configurable search spaces via the 'paradox' package and finds optimal hyperparameter configurations for any 'mlr3' learner. 'mlr3tuning' works with several optimization algorithms e.g. Random Search, Iterated Racing, Bayesian Optimization (in 'mlr3mbo') and Hyperband (in 'mlr3hyperband'). Moreover, it can automatically optimize learners and estimate the performance of optimized models with nested resampling.
Author(s)
Maintainer: Marc Becker marcbecker@posteo.de (ORCID)
Authors:
Michel Lang michellang@gmail.com (ORCID)
Jakob Richter jakob1richter@gmail.com (ORCID)
Bernd Bischl bernd_bischl@gmx.net (ORCID)
Daniel Schalk daniel.schalk@stat.uni-muenchen.de (ORCID)
See Also
Useful links:
Report bugs at https://github.com/mlr-org/mlr3tuning/issues