| extract_inner_tuning_results {mlr3tuning} | R Documentation |
Extract Inner Tuning Results
Description
Extract inner tuning results of nested resampling. Implemented for mlr3::ResampleResult and mlr3::BenchmarkResult.
Usage
extract_inner_tuning_results(x, tuning_instance, ...)
## S3 method for class 'ResampleResult'
extract_inner_tuning_results(x, tuning_instance = FALSE, ...)
## S3 method for class 'BenchmarkResult'
extract_inner_tuning_results(x, tuning_instance = FALSE, ...)
Arguments
x |
|
tuning_instance |
( |
... |
(any) |
Details
The function iterates over the AutoTuner objects and binds the tuning results to a data.table::data.table().
The AutoTuner must be initialized with store_tuning_instance = TRUE and mlr3::resample() or mlr3::benchmark() must be called with store_models = TRUE.
Optionally, the tuning instance can be added for each iteration.
Value
Data structure
The returned data table has the following columns:
-
experiment(integer(1))
Index, giving the according row number in the original benchmark grid. -
iteration(integer(1))
Iteration of the outer resampling. One column for each hyperparameter of the search spaces.
One column for each performance measure.
-
learner_param_vals(list())
Hyperparameter values used by the learner. Includes fixed and proposed hyperparameter values. -
x_domain(list())
List of transformed hyperparameter values. -
tuning_instance(TuningInstanceBatchSingleCrit | TuningInstanceBatchMultiCrit)
Optionally, tuning instances. -
task_id(character(1)). -
learner_id(character(1)). -
resampling_id(character(1)).
Examples
# Nested Resampling on Palmer Penguins Data Set
learner = lrn("classif.rpart",
cp = to_tune(1e-04, 1e-1, logscale = TRUE))
# create auto tuner
at = auto_tuner(
tuner = tnr("random_search"),
learner = learner,
resampling = rsmp ("holdout"),
measure = msr("classif.ce"),
term_evals = 4)
resampling_outer = rsmp("cv", folds = 2)
rr = resample(tsk("iris"), at, resampling_outer, store_models = TRUE)
# extract inner results
extract_inner_tuning_results(rr)