mlr_pipeops_torch_ingress_categ {mlr3torch}R Documentation

Torch Entry Point for Categorical Features

Description

Ingress PipeOp that represents a categorical (factor(), ordered() and logical()) entry point to a torch network.

Parameters

Internals

Uses batchgetter_categ().

Input and Output Channels

One input channel called "input" and one output channel called "output". For an explanation see PipeOpTorch.

State

The state is set to the input shape.

Super classes

mlr3pipelines::PipeOp -> mlr3torch::PipeOpTorchIngress -> PipeOpTorchIngressCategorical

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
PipeOpTorchIngressCategorical$new(
  id = "torch_ingress_categ",
  param_vals = list()
)
Arguments
id

(character(1))
Identifier of the resulting object.

param_vals

(list())
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction.


Method clone()

The objects of this class are cloneable with this method.

Usage
PipeOpTorchIngressCategorical$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

See Also

Other PipeOps: mlr_pipeops_nn_avg_pool1d, mlr_pipeops_nn_avg_pool2d, mlr_pipeops_nn_avg_pool3d, mlr_pipeops_nn_batch_norm1d, mlr_pipeops_nn_batch_norm2d, mlr_pipeops_nn_batch_norm3d, mlr_pipeops_nn_block, mlr_pipeops_nn_celu, mlr_pipeops_nn_conv1d, mlr_pipeops_nn_conv2d, mlr_pipeops_nn_conv3d, mlr_pipeops_nn_conv_transpose1d, mlr_pipeops_nn_conv_transpose2d, mlr_pipeops_nn_conv_transpose3d, mlr_pipeops_nn_dropout, mlr_pipeops_nn_elu, mlr_pipeops_nn_flatten, mlr_pipeops_nn_gelu, mlr_pipeops_nn_glu, mlr_pipeops_nn_hardshrink, mlr_pipeops_nn_hardsigmoid, mlr_pipeops_nn_hardtanh, mlr_pipeops_nn_head, mlr_pipeops_nn_layer_norm, mlr_pipeops_nn_leaky_relu, mlr_pipeops_nn_linear, mlr_pipeops_nn_log_sigmoid, mlr_pipeops_nn_max_pool1d, mlr_pipeops_nn_max_pool2d, mlr_pipeops_nn_max_pool3d, mlr_pipeops_nn_merge, mlr_pipeops_nn_merge_cat, mlr_pipeops_nn_merge_prod, mlr_pipeops_nn_merge_sum, mlr_pipeops_nn_prelu, mlr_pipeops_nn_relu, mlr_pipeops_nn_relu6, mlr_pipeops_nn_reshape, mlr_pipeops_nn_rrelu, mlr_pipeops_nn_selu, mlr_pipeops_nn_sigmoid, mlr_pipeops_nn_softmax, mlr_pipeops_nn_softplus, mlr_pipeops_nn_softshrink, mlr_pipeops_nn_softsign, mlr_pipeops_nn_squeeze, mlr_pipeops_nn_tanh, mlr_pipeops_nn_tanhshrink, mlr_pipeops_nn_threshold, mlr_pipeops_torch_ingress, mlr_pipeops_torch_ingress_ltnsr, mlr_pipeops_torch_ingress_num, mlr_pipeops_torch_loss, mlr_pipeops_torch_model, mlr_pipeops_torch_model_classif, mlr_pipeops_torch_model_regr

Other Graph Network: ModelDescriptor(), TorchIngressToken(), mlr_learners_torch_model, mlr_pipeops_module, mlr_pipeops_torch, mlr_pipeops_torch_ingress, mlr_pipeops_torch_ingress_ltnsr, mlr_pipeops_torch_ingress_num, model_descriptor_to_learner(), model_descriptor_to_module(), model_descriptor_union(), nn_graph()

Examples


graph = po("select", selector = selector_type("factor")) %>>%
  po("torch_ingress_categ")
task = tsk("german_credit")
# The output is a model descriptor
md = graph$train(task)[[1L]]
ingress = md$ingress[[1L]]
ingress$batchgetter(task$data(1, ingress$features), "cpu")


[Package mlr3torch version 0.1.0 Index]