| mlr_pipeops_torch_ingress_categ {mlr3torch} | R Documentation |
Torch Entry Point for Categorical Features
Description
Ingress PipeOp that represents a categorical (factor(), ordered() and logical()) entry point to a torch network.
Parameters
-
select::logical(1)
WhetherPipeOpshould selected the supported feature types. Otherwise it will err on receiving tasks with unsupported feature types.
Internals
Uses batchgetter_categ().
Input and Output Channels
One input channel called "input" and one output channel called "output".
For an explanation see PipeOpTorch.
State
The state is set to the input shape.
Super classes
mlr3pipelines::PipeOp -> mlr3torch::PipeOpTorchIngress -> PipeOpTorchIngressCategorical
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
PipeOpTorchIngressCategorical$new( id = "torch_ingress_categ", param_vals = list() )
Arguments
id(
character(1))
Identifier of the resulting object.param_vals(
list())
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction.
Method clone()
The objects of this class are cloneable with this method.
Usage
PipeOpTorchIngressCategorical$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
See Also
Other PipeOps:
mlr_pipeops_nn_avg_pool1d,
mlr_pipeops_nn_avg_pool2d,
mlr_pipeops_nn_avg_pool3d,
mlr_pipeops_nn_batch_norm1d,
mlr_pipeops_nn_batch_norm2d,
mlr_pipeops_nn_batch_norm3d,
mlr_pipeops_nn_block,
mlr_pipeops_nn_celu,
mlr_pipeops_nn_conv1d,
mlr_pipeops_nn_conv2d,
mlr_pipeops_nn_conv3d,
mlr_pipeops_nn_conv_transpose1d,
mlr_pipeops_nn_conv_transpose2d,
mlr_pipeops_nn_conv_transpose3d,
mlr_pipeops_nn_dropout,
mlr_pipeops_nn_elu,
mlr_pipeops_nn_flatten,
mlr_pipeops_nn_gelu,
mlr_pipeops_nn_glu,
mlr_pipeops_nn_hardshrink,
mlr_pipeops_nn_hardsigmoid,
mlr_pipeops_nn_hardtanh,
mlr_pipeops_nn_head,
mlr_pipeops_nn_layer_norm,
mlr_pipeops_nn_leaky_relu,
mlr_pipeops_nn_linear,
mlr_pipeops_nn_log_sigmoid,
mlr_pipeops_nn_max_pool1d,
mlr_pipeops_nn_max_pool2d,
mlr_pipeops_nn_max_pool3d,
mlr_pipeops_nn_merge,
mlr_pipeops_nn_merge_cat,
mlr_pipeops_nn_merge_prod,
mlr_pipeops_nn_merge_sum,
mlr_pipeops_nn_prelu,
mlr_pipeops_nn_relu,
mlr_pipeops_nn_relu6,
mlr_pipeops_nn_reshape,
mlr_pipeops_nn_rrelu,
mlr_pipeops_nn_selu,
mlr_pipeops_nn_sigmoid,
mlr_pipeops_nn_softmax,
mlr_pipeops_nn_softplus,
mlr_pipeops_nn_softshrink,
mlr_pipeops_nn_softsign,
mlr_pipeops_nn_squeeze,
mlr_pipeops_nn_tanh,
mlr_pipeops_nn_tanhshrink,
mlr_pipeops_nn_threshold,
mlr_pipeops_torch_ingress,
mlr_pipeops_torch_ingress_ltnsr,
mlr_pipeops_torch_ingress_num,
mlr_pipeops_torch_loss,
mlr_pipeops_torch_model,
mlr_pipeops_torch_model_classif,
mlr_pipeops_torch_model_regr
Other Graph Network:
ModelDescriptor(),
TorchIngressToken(),
mlr_learners_torch_model,
mlr_pipeops_module,
mlr_pipeops_torch,
mlr_pipeops_torch_ingress,
mlr_pipeops_torch_ingress_ltnsr,
mlr_pipeops_torch_ingress_num,
model_descriptor_to_learner(),
model_descriptor_to_module(),
model_descriptor_union(),
nn_graph()
Examples
graph = po("select", selector = selector_type("factor")) %>>%
po("torch_ingress_categ")
task = tsk("german_credit")
# The output is a model descriptor
md = graph$train(task)[[1L]]
ingress = md$ingress[[1L]]
ingress$batchgetter(task$data(1, ingress$features), "cpu")