| mlr_pipeops_nn_elu {mlr3torch} | R Documentation |
ELU Activation Function
Description
Applies element-wise,
ELU(x) = max(0,x) + min(0, \alpha * (exp(x) - 1))
.
Input and Output Channels
One input channel called "input" and one output channel called "output".
For an explanation see PipeOpTorch.
State
The state is the value calculated by the public method $shapes_out().
Credit
Part of this documentation have been copied or adapted from the documentation of torch.
Parameters
-
alpha::numeric(1)
The alpha value for the ELU formulation. Default: 1.0 -
inplace::logical(1)
Whether to do the operation in-place. Default:FALSE.
Internals
Calls torch::nn_elu() when trained.
Super classes
mlr3pipelines::PipeOp -> mlr3torch::PipeOpTorch -> PipeOpTorchELU
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
PipeOpTorchELU$new(id = "nn_elu", param_vals = list())
Arguments
id(
character(1))
Identifier of the resulting object.param_vals(
list())
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction.
Method clone()
The objects of this class are cloneable with this method.
Usage
PipeOpTorchELU$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
See Also
Other PipeOps:
mlr_pipeops_nn_avg_pool1d,
mlr_pipeops_nn_avg_pool2d,
mlr_pipeops_nn_avg_pool3d,
mlr_pipeops_nn_batch_norm1d,
mlr_pipeops_nn_batch_norm2d,
mlr_pipeops_nn_batch_norm3d,
mlr_pipeops_nn_block,
mlr_pipeops_nn_celu,
mlr_pipeops_nn_conv1d,
mlr_pipeops_nn_conv2d,
mlr_pipeops_nn_conv3d,
mlr_pipeops_nn_conv_transpose1d,
mlr_pipeops_nn_conv_transpose2d,
mlr_pipeops_nn_conv_transpose3d,
mlr_pipeops_nn_dropout,
mlr_pipeops_nn_flatten,
mlr_pipeops_nn_gelu,
mlr_pipeops_nn_glu,
mlr_pipeops_nn_hardshrink,
mlr_pipeops_nn_hardsigmoid,
mlr_pipeops_nn_hardtanh,
mlr_pipeops_nn_head,
mlr_pipeops_nn_layer_norm,
mlr_pipeops_nn_leaky_relu,
mlr_pipeops_nn_linear,
mlr_pipeops_nn_log_sigmoid,
mlr_pipeops_nn_max_pool1d,
mlr_pipeops_nn_max_pool2d,
mlr_pipeops_nn_max_pool3d,
mlr_pipeops_nn_merge,
mlr_pipeops_nn_merge_cat,
mlr_pipeops_nn_merge_prod,
mlr_pipeops_nn_merge_sum,
mlr_pipeops_nn_prelu,
mlr_pipeops_nn_relu,
mlr_pipeops_nn_relu6,
mlr_pipeops_nn_reshape,
mlr_pipeops_nn_rrelu,
mlr_pipeops_nn_selu,
mlr_pipeops_nn_sigmoid,
mlr_pipeops_nn_softmax,
mlr_pipeops_nn_softplus,
mlr_pipeops_nn_softshrink,
mlr_pipeops_nn_softsign,
mlr_pipeops_nn_squeeze,
mlr_pipeops_nn_tanh,
mlr_pipeops_nn_tanhshrink,
mlr_pipeops_nn_threshold,
mlr_pipeops_torch_ingress,
mlr_pipeops_torch_ingress_categ,
mlr_pipeops_torch_ingress_ltnsr,
mlr_pipeops_torch_ingress_num,
mlr_pipeops_torch_loss,
mlr_pipeops_torch_model,
mlr_pipeops_torch_model_classif,
mlr_pipeops_torch_model_regr
Examples
# Construct the PipeOp
pipeop = po("nn_elu")
pipeop
# The available parameters
pipeop$param_set