| mlr_pipeops_nn_batch_norm3d {mlr3torch} | R Documentation |
3D Batch Normalization
Description
Applies Batch Normalization for each channel across a batch of data.
Input and Output Channels
One input channel called "input" and one output channel called "output".
For an explanation see PipeOpTorch.
State
The state is the value calculated by the public method $shapes_out().
Credit
Part of this documentation have been copied or adapted from the documentation of torch.
Internals
Calls torch::nn_batch_norm3d().
The parameter num_features is inferred as the second dimension of the input shape.
Parameters
-
eps::numeric(1)
A value added to the denominator for numerical stability. Default:1e-5. -
momentum::numeric(1)
The value used for the running_mean and running_var computation. Can be set toNULLfor cumulative moving average (i.e. simple average). Default: 0.1 -
affine::logical(1)
a boolean value that when set toTRUE, this module has learnable affine parameters. Default:TRUE -
track_running_stats::logical(1)
a boolean value that when set toTRUE, this module tracks the running mean and variance, and when set toFALSE, this module does not track such statistics and always uses batch statistics in both training and eval modes. Default:TRUE
Super classes
mlr3pipelines::PipeOp -> mlr3torch::PipeOpTorch -> mlr3torch::PipeOpTorchBatchNorm -> PipeOpTorchBatchNorm3D
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
PipeOpTorchBatchNorm3D$new(id = "nn_batch_norm3d", param_vals = list())
Arguments
id(
character(1))
Identifier of the resulting object.param_vals(
list())
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction.
Method clone()
The objects of this class are cloneable with this method.
Usage
PipeOpTorchBatchNorm3D$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
See Also
Other PipeOps:
mlr_pipeops_nn_avg_pool1d,
mlr_pipeops_nn_avg_pool2d,
mlr_pipeops_nn_avg_pool3d,
mlr_pipeops_nn_batch_norm1d,
mlr_pipeops_nn_batch_norm2d,
mlr_pipeops_nn_block,
mlr_pipeops_nn_celu,
mlr_pipeops_nn_conv1d,
mlr_pipeops_nn_conv2d,
mlr_pipeops_nn_conv3d,
mlr_pipeops_nn_conv_transpose1d,
mlr_pipeops_nn_conv_transpose2d,
mlr_pipeops_nn_conv_transpose3d,
mlr_pipeops_nn_dropout,
mlr_pipeops_nn_elu,
mlr_pipeops_nn_flatten,
mlr_pipeops_nn_gelu,
mlr_pipeops_nn_glu,
mlr_pipeops_nn_hardshrink,
mlr_pipeops_nn_hardsigmoid,
mlr_pipeops_nn_hardtanh,
mlr_pipeops_nn_head,
mlr_pipeops_nn_layer_norm,
mlr_pipeops_nn_leaky_relu,
mlr_pipeops_nn_linear,
mlr_pipeops_nn_log_sigmoid,
mlr_pipeops_nn_max_pool1d,
mlr_pipeops_nn_max_pool2d,
mlr_pipeops_nn_max_pool3d,
mlr_pipeops_nn_merge,
mlr_pipeops_nn_merge_cat,
mlr_pipeops_nn_merge_prod,
mlr_pipeops_nn_merge_sum,
mlr_pipeops_nn_prelu,
mlr_pipeops_nn_relu,
mlr_pipeops_nn_relu6,
mlr_pipeops_nn_reshape,
mlr_pipeops_nn_rrelu,
mlr_pipeops_nn_selu,
mlr_pipeops_nn_sigmoid,
mlr_pipeops_nn_softmax,
mlr_pipeops_nn_softplus,
mlr_pipeops_nn_softshrink,
mlr_pipeops_nn_softsign,
mlr_pipeops_nn_squeeze,
mlr_pipeops_nn_tanh,
mlr_pipeops_nn_tanhshrink,
mlr_pipeops_nn_threshold,
mlr_pipeops_torch_ingress,
mlr_pipeops_torch_ingress_categ,
mlr_pipeops_torch_ingress_ltnsr,
mlr_pipeops_torch_ingress_num,
mlr_pipeops_torch_loss,
mlr_pipeops_torch_model,
mlr_pipeops_torch_model_classif,
mlr_pipeops_torch_model_regr
Examples
# Construct the PipeOp
pipeop = po("nn_batch_norm3d")
pipeop
# The available parameters
pipeop$param_set