| mlr_learners_torch_image {mlr3torch} | R Documentation |
Image Learner
Description
Base Class for Image Learners.
The features are assumed to be a single lazy_tensor column in RGB format.
Parameters
Parameters include those inherited from LearnerTorch and the param_set construction argument.
Super classes
mlr3::Learner -> mlr3torch::LearnerTorch -> LearnerTorchImage
Methods
Public methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$reset()mlr3::Learner$train()mlr3torch::LearnerTorch$dataset()mlr3torch::LearnerTorch$format()mlr3torch::LearnerTorch$marshal()mlr3torch::LearnerTorch$print()mlr3torch::LearnerTorch$unmarshal()
Method new()
Creates a new instance of this R6 class.
Usage
LearnerTorchImage$new(
id,
task_type,
param_set = ps(),
label,
optimizer = NULL,
loss = NULL,
callbacks = list(),
packages = c("torchvision", "magick"),
man,
properties = NULL,
predict_types = NULL
)Arguments
id(
character(1))
The id for of the new object.task_type(
character(1))
The task type.param_set(
ParamSet)
The parameter set.label(
character(1))
Label for the new instance.optimizer(
TorchOptimizer)
The torch optimizer.loss(
TorchLoss)
The loss to use for training.callbacks(
list()ofTorchCallbacks)
The callbacks used during training. Must have unique ids. They are executed in the order in which they are providedpackages(
character())
The R packages this object depends on.man(
character(1))
String in the format[pkg]::[topic]pointing to a manual page for this object. The referenced help package can be opened via method$help().properties(
character())
The properties of the object. Seemlr_reflections$learner_propertiesfor available values.predict_types(
character())
The predict types. Seemlr_reflections$learner_predict_typesfor available values.
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerTorchImage$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
See Also
Other Learner:
mlr_learners.mlp,
mlr_learners.tab_resnet,
mlr_learners.torch_featureless,
mlr_learners_torch,
mlr_learners_torch_model