| mlr_learners.tab_resnet {mlr3torch} | R Documentation |
Tabular ResNet
Description
Tabular resnet.
Dictionary
This Learner can be instantiated using the sugar function lrn():
lrn("classif.tab_resnet", ...)
lrn("regr.tab_resnet", ...)
Properties
Supported task types: 'classif', 'regr'
Predict Types:
classif: 'response', 'prob'
regr: 'response'
Feature Types: “integer”, “numeric”
Parameters
Parameters from LearnerTorch, as well as:
-
n_blocks::integer(1)
The number of blocks. -
d_block::integer(1)
The input and output dimension of a block. -
d_hidden::integer(1)
The latent dimension of a block. -
d_hidden_multiplier::integer(1)
Alternative way to specify the latent dimension asd_block * d_hidden_multiplier. -
dropout1::numeric(1)
First dropout ratio. -
dropout2::numeric(1)
Second dropout ratio.
Super classes
mlr3::Learner -> mlr3torch::LearnerTorch -> LearnerTorchTabResNet
Methods
Public methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$reset()mlr3::Learner$train()mlr3torch::LearnerTorch$dataset()mlr3torch::LearnerTorch$format()mlr3torch::LearnerTorch$marshal()mlr3torch::LearnerTorch$print()mlr3torch::LearnerTorch$unmarshal()
Method new()
Creates a new instance of this R6 class.
Usage
LearnerTorchTabResNet$new( task_type, optimizer = NULL, loss = NULL, callbacks = list() )
Arguments
task_type(
character(1))
The task type, either"classif" or"regr".optimizer(
TorchOptimizer)
The optimizer to use for training. Per default, adam is used.loss(
TorchLoss)
The loss used to train the network. Per default, mse is used for regression and cross_entropy for classification.callbacks(
list()ofTorchCallbacks)
The callbacks. Must have unique ids.
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerTorchTabResNet$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
References
Gorishniy Y, Rubachev I, Khrulkov V, Babenko A (2021). “Revisiting Deep Learning for Tabular Data.” arXiv, 2106.11959.
See Also
Other Learner:
mlr_learners.mlp,
mlr_learners.torch_featureless,
mlr_learners_torch,
mlr_learners_torch_image,
mlr_learners_torch_model
Examples
# Define the Learner and set parameter values
learner = lrn("classif.tab_resnet")
learner$param_set$set_values(
epochs = 1, batch_size = 16, device = "cpu",
n_blocks = 2, d_block = 10, d_hidden = 20, dropout1 = 0.3, dropout2 = 0.3
)
# Define a Task
task = tsk("iris")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()