TorchOptimizer {mlr3torch} | R Documentation |
Torch Optimizer
Description
This wraps a torch::torch_optimizer_generator
a and annotates it with metadata, most importantly a ParamSet
.
The optimizer is created for the given parameter values by calling the $generate()
method.
This class is usually used to configure the optimizer of a torch learner, e.g.
when construcing a learner or in a ModelDescriptor
.
For a list of available optimizers, see mlr3torch_optimizers
.
Items from this dictionary can be retrieved using t_opt()
.
Parameters
Defined by the constructor argument param_set
.
If no parameter set is provided during construction, the parameter set is constructed by creating a parameter
for each argument of the wrapped loss function, where the parametes are then of type ParamUty
.
Super class
mlr3torch::TorchDescriptor
-> TorchOptimizer
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
TorchOptimizer$new( torch_optimizer, param_set = NULL, id = NULL, label = NULL, packages = NULL, man = NULL )
Arguments
torch_optimizer
(
torch_optimizer_generator
)
The torch optimizer.param_set
(
ParamSet
orNULL
)
The parameter set. IfNULL
(default) it is inferred fromtorch_optimizer
.id
(
character(1)
)
The id for of the new object.label
(
character(1)
)
Label for the new instance.packages
(
character()
)
The R packages this object depends on.man
(
character(1)
)
String in the format[pkg]::[topic]
pointing to a manual page for this object. The referenced help package can be opened via method$help()
.
Method generate()
Instantiates the optimizer.
Usage
TorchOptimizer$generate(params)
Arguments
params
(named
list()
oftorch_tensor
s)
The parameters of the network.
Returns
torch_optimizer
Method clone()
The objects of this class are cloneable with this method.
Usage
TorchOptimizer$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
See Also
Other Torch Descriptor:
TorchCallback
,
TorchDescriptor
,
TorchLoss
,
as_torch_callbacks()
,
as_torch_loss()
,
as_torch_optimizer()
,
mlr3torch_losses
,
mlr3torch_optimizers
,
t_clbk()
,
t_loss()
,
t_opt()
Examples
# Create a new torch loss
torch_opt = TorchOptimizer$new(optim_adam, label = "adam")
torch_opt
# If the param set is not specified, parameters are inferred but are of class ParamUty
torch_opt$param_set
# open the help page of the wrapped optimizer
# torch_opt$help()
# Retrieve an optimizer from the dictionary
torch_opt = t_opt("sgd", lr = 0.1)
torch_opt
torch_opt$param_set
torch_opt$label
torch_opt$id
# Create the optimizer for a network
net = nn_linear(10, 1)
opt = torch_opt$generate(net$parameters)
# is the same as
optim_sgd(net$parameters, lr = 0.1)
# Use in a learner
learner = lrn("regr.mlp", optimizer = t_opt("sgd"))
# The parameters of the optimizer are added to the learner's parameter set
learner$param_set