mlr_resamplings_spcv_disc {mlr3spatiotempcv}R Documentation

(sperrorest) Spatial "disc" resampling

Description

Spatial partitioning using circular test areas of one of more observations. Optionally, a buffer around the test area can be used to exclude observations. See the upstream implementation at sperrorest::partition_disc() and Brenning (2012) for further information.

Parameters

Super class

mlr3::Resampling -> ResamplingSpCVDisc

Active bindings

iters

integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods

Inherited methods

Method new()

Create a "Spatial 'Disc' resampling" resampling instance.

For a list of available arguments, please see sperrorest::partition_disc.

Usage
ResamplingSpCVDisc$new(id = "spcv_disc")
Arguments
id

character(1)
Identifier for the resampling strategy.


Method instantiate()

Materializes fixed training and test splits for a given task.

Usage
ResamplingSpCVDisc$instantiate(task)
Arguments
task

Task
A task to instantiate.


Method clone()

The objects of this class are cloneable with this method.

Usage
ResamplingSpCVDisc$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

Brenning A (2012). “Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest.” In 2012 IEEE International Geoscience and Remote Sensing Symposium. doi:10.1109/igarss.2012.6352393.

Examples

library(mlr3)
task = tsk("ecuador")

# Instantiate Resampling
rcv = rsmp("spcv_disc", folds = 3L, radius = 200L, buffer = 200L)
rcv$instantiate(task)

# Individual sets:
rcv$train_set(1)
rcv$test_set(1)
# check that no obs are in both sets
intersect(rcv$train_set(1), rcv$test_set(1)) # good!

# Internal storage:
rcv$instance # table

[Package mlr3spatiotempcv version 2.3.1 Index]