mlr_resamplings_spcv_coords {mlr3spatiotempcv} | R Documentation |
(sperrorest) Coordinate-based k-means clustering
Description
Splits data by clustering in the coordinate space.
See the upstream implementation at sperrorest::partition_kmeans()
and
Brenning (2012) for further information.
Details
Universal partitioning method that splits the data in the coordinate space.
Useful for spatially homogeneous datasets that cannot be split well with
rectangular approaches like ResamplingSpCVBlock
.
Parameters
-
folds
(integer(1)
)
Number of folds.
Super class
mlr3::Resampling
-> ResamplingSpCVCoords
Active bindings
iters
integer(1)
Returns the number of resampling iterations, depending on the values stored in theparam_set
.
Methods
Public methods
Inherited methods
Method new()
Create an "coordinate-based" repeated resampling instance.
For a list of available arguments, please see sperrorest::partition_cv.
Usage
ResamplingSpCVCoords$new(id = "spcv_coords")
Arguments
id
character(1)
Identifier for the resampling strategy.
Method instantiate()
Materializes fixed training and test splits for a given task.
Usage
ResamplingSpCVCoords$instantiate(task)
Arguments
task
Task
A task to instantiate.
Method clone()
The objects of this class are cloneable with this method.
Usage
ResamplingSpCVCoords$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
References
Brenning A (2012). “Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest.” In 2012 IEEE International Geoscience and Remote Sensing Symposium. doi:10.1109/igarss.2012.6352393.
Examples
library(mlr3)
task = tsk("ecuador")
# Instantiate Resampling
rcv = rsmp("spcv_coords", folds = 5)
rcv$instantiate(task)
# Individual sets:
rcv$train_set(1)
rcv$test_set(1)
# check that no obs are in both sets
intersect(rcv$train_set(1), rcv$test_set(1)) # good!
# Internal storage:
rcv$instance # table