mlr_resamplings_repeated_spcv_tiles {mlr3spatiotempcv}R Documentation

(sperrorest) Repeated spatial "tiles" resampling

Description

Spatial partitioning using rectangular tiles. Small partitions can optionally be merged into adjacent ones to avoid partitions with too few observations. This method is similar to ResamplingSpCVBlock by making use of rectangular zones in the coordinate space. See the upstream implementation at sperrorest::partition_disc() and Brenning (2012) for further information.

Parameters

Super class

mlr3::Resampling -> ResamplingRepeatedSpCVTiles

Active bindings

iters

integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods

Inherited methods

Method new()

Create a "Spatial 'Tiles' resampling" resampling instance.

For a list of available arguments, please see sperrorest::partition_tiles.

Usage
ResamplingRepeatedSpCVTiles$new(id = "repeated_spcv_tiles")
Arguments
id

character(1)
Identifier for the resampling strategy.


Method folds()

Translates iteration numbers to fold number.

Usage
ResamplingRepeatedSpCVTiles$folds(iters)
Arguments
iters

integer()
Iteration number.


Method repeats()

Translates iteration numbers to repetition number.

Usage
ResamplingRepeatedSpCVTiles$repeats(iters)
Arguments
iters

integer()
Iteration number.


Method instantiate()

Materializes fixed training and test splits for a given task.

Usage
ResamplingRepeatedSpCVTiles$instantiate(task)
Arguments
task

Task
A task to instantiate.


Method clone()

The objects of this class are cloneable with this method.

Usage
ResamplingRepeatedSpCVTiles$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

Brenning A (2012). “Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest.” In 2012 IEEE International Geoscience and Remote Sensing Symposium. doi:10.1109/igarss.2012.6352393.

See Also

ResamplingSpCVBlock

Examples

if (mlr3misc::require_namespaces("sperrorest", quietly = TRUE)) {
  library(mlr3)
  task = tsk("ecuador")

  # Instantiate Resampling
  rrcv = rsmp("repeated_spcv_tiles",
    repeats = 2,
    nsplit = c(4L, 3L), reassign = FALSE)
  rrcv$instantiate(task)

  # Individual sets:
  rrcv$iters
  rrcv$folds(10:12)
  rrcv$repeats(10:12)

  # Individual sets:
  rrcv$train_set(1)
  rrcv$test_set(1)
  intersect(rrcv$train_set(1), rrcv$test_set(1))

  # Internal storage:
  rrcv$instance # table
}

[Package mlr3spatiotempcv version 2.3.1 Index]