mlr_pipeops_yeojohnson {mlr3pipelines} | R Documentation |
Yeo-Johnson Transformation of Numeric Features
Description
Conducts a Yeo-Johnson transformation on numeric features. It therefore estimates
the optimal value of lambda for the transformation.
See bestNormalize::yeojohnson()
for details.
Format
R6Class
object inheriting from PipeOpTaskPreproc
/PipeOp
.
Construction
PipeOpYeoJohnson$new(id = "yeojohnson", param_vals = list())
-
id
::character(1)
Identifier of resulting object, default"yeojohnson"
. -
param_vals
:: namedlist
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Defaultlist()
.
Input and Output Channels
Input and output channels are inherited from PipeOpTaskPreproc
.
The output is the input Task
with all affected numeric features replaced by their transformed versions.
State
The $state
is a named list
with the $state
elements inherited from PipeOpTaskPreproc
,
as well as a list of class yeojohnson
for each column, which is transformed.
Parameters
The parameters are the parameters inherited from PipeOpTaskPreproc
, as well as:
-
eps
::numeric(1)
Tolerance parameter to identify the lambda parameter as zero. For details seeyeojohnson()
. -
standardize
::logical
Whether to center and scale the transformed values to attempt a standard normal distribution. For details seeyeojohnson()
. -
lower
::numeric(1)
Lower value for estimation of lambda parameter. For details seeyeojohnson()
. -
upper
::numeric(1)
Upper value for estimation of lambda parameter. For details seeyeojohnson()
.
Internals
Uses the bestNormalize::yeojohnson
function.
Methods
Only methods inherited from PipeOpTaskPreproc
/PipeOp
.
See Also
https://mlr-org.com/pipeops.html
Other PipeOps:
PipeOp
,
PipeOpEnsemble
,
PipeOpImpute
,
PipeOpTargetTrafo
,
PipeOpTaskPreproc
,
PipeOpTaskPreprocSimple
,
mlr_pipeops
,
mlr_pipeops_boxcox
,
mlr_pipeops_branch
,
mlr_pipeops_chunk
,
mlr_pipeops_classbalancing
,
mlr_pipeops_classifavg
,
mlr_pipeops_classweights
,
mlr_pipeops_colapply
,
mlr_pipeops_collapsefactors
,
mlr_pipeops_colroles
,
mlr_pipeops_copy
,
mlr_pipeops_datefeatures
,
mlr_pipeops_encode
,
mlr_pipeops_encodeimpact
,
mlr_pipeops_encodelmer
,
mlr_pipeops_featureunion
,
mlr_pipeops_filter
,
mlr_pipeops_fixfactors
,
mlr_pipeops_histbin
,
mlr_pipeops_ica
,
mlr_pipeops_imputeconstant
,
mlr_pipeops_imputehist
,
mlr_pipeops_imputelearner
,
mlr_pipeops_imputemean
,
mlr_pipeops_imputemedian
,
mlr_pipeops_imputemode
,
mlr_pipeops_imputeoor
,
mlr_pipeops_imputesample
,
mlr_pipeops_kernelpca
,
mlr_pipeops_learner
,
mlr_pipeops_missind
,
mlr_pipeops_modelmatrix
,
mlr_pipeops_multiplicityexply
,
mlr_pipeops_multiplicityimply
,
mlr_pipeops_mutate
,
mlr_pipeops_nmf
,
mlr_pipeops_nop
,
mlr_pipeops_ovrsplit
,
mlr_pipeops_ovrunite
,
mlr_pipeops_pca
,
mlr_pipeops_proxy
,
mlr_pipeops_quantilebin
,
mlr_pipeops_randomprojection
,
mlr_pipeops_randomresponse
,
mlr_pipeops_regravg
,
mlr_pipeops_removeconstants
,
mlr_pipeops_renamecolumns
,
mlr_pipeops_replicate
,
mlr_pipeops_scale
,
mlr_pipeops_scalemaxabs
,
mlr_pipeops_scalerange
,
mlr_pipeops_select
,
mlr_pipeops_smote
,
mlr_pipeops_spatialsign
,
mlr_pipeops_subsample
,
mlr_pipeops_targetinvert
,
mlr_pipeops_targetmutate
,
mlr_pipeops_targettrafoscalerange
,
mlr_pipeops_textvectorizer
,
mlr_pipeops_threshold
,
mlr_pipeops_tunethreshold
,
mlr_pipeops_unbranch
,
mlr_pipeops_updatetarget
,
mlr_pipeops_vtreat
Examples
library("mlr3")
task = tsk("iris")
pop = po("yeojohnson")
task$data()
pop$train(list(task))[[1]]$data()
pop$state