mlr_pipeops_vtreat {mlr3pipelines}R Documentation

Interface to the vtreat Package

Description

Provides an interface to the vtreat package.

PipeOpVtreat naturally works for classification tasks and regression tasks. Internally, PipeOpVtreat follows the fit/prepare interface of vtreat, i.e., first creating a data treatment transform object via vtreat::NumericOutcomeTreatment(), vtreat::BinomialOutcomeTreatment(), or vtreat::MultinomialOutcomeTreatment(), followed by calling vtreat::fit_prepare() on the training data and vtreat::prepare() during predicton.

Format

R6Class object inheriting from PipeOpTaskPreproc/PipeOp.

Construction

PipeOpVreat$new(id = "vtreat", param_vals = list())

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc.

The output is the input Task with all affected features "prepared" by vtreat. If vtreat found "no usable vars", the input Task is returned unaltered.

State

The ⁠$state⁠ is a named list with the ⁠$state⁠ elements inherited from PipeOpTaskPreproc, as well as:

Parameters

The parameters are the parameters inherited from PipeOpTaskPreproc, as well as:

For more information, see vtreat::regression_parameters(), vtreat::classification_parameters(), or vtreat::multinomial_parameters().

Internals

Follows vtreat's fit/prepare interface. See vtreat::NumericOutcomeTreatment(), vtreat::BinomialOutcomeTreatment(), vtreat::MultinomialOutcomeTreatment(), vtreat::fit_prepare() and vtreat::prepare().

Methods

Only methods inherited from PipeOpTaskPreproc/PipeOp.

See Also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc, PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk, mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply, mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures, mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion, mlr_pipeops_filter, mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant, mlr_pipeops_imputehist, mlr_pipeops_imputelearner, mlr_pipeops_imputemean, mlr_pipeops_imputemedian, mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca, mlr_pipeops_learner, mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_spatialsign, mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange, mlr_pipeops_textvectorizer, mlr_pipeops_threshold, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch, mlr_pipeops_updatetarget, mlr_pipeops_yeojohnson

Examples


library("mlr3")

set.seed(2020)

make_data <- function(nrows) {
    d <- data.frame(x = 5 * rnorm(nrows))
    d["y"] = sin(d[["x"]]) + 0.01 * d[["x"]] + 0.1 * rnorm(nrows)
    d[4:10, "x"] = NA  # introduce NAs
    d["xc"] = paste0("level_", 5 * round(d$y / 5, 1))
    d["x2"] = rnorm(nrows)
    d[d["xc"] == "level_-1", "xc"] = NA  # introduce a NA level
    return(d)
}

task = TaskRegr$new("vtreat_regr", backend = make_data(100), target = "y")

pop = PipeOpVtreat$new()
pop$train(list(task))


[Package mlr3pipelines version 0.6.0 Index]